ارزیابی عملکرد الگوریتم خفاش در بهینه‌سازی پارامترهای مدل غیرخطی ماسکینگام برای روندیابی سیلاب

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکدۀ مهندسی عمران، دانشگاه سمنان

2 استادیار، دانشکدۀ مهندسی عمران، دانشگاه سمنان

3 استاد، دانشکدۀ مهندسی عمران، دانشگاه سمنان

4 دانشجوی دکتری، دانشکدۀ مهندسی عمران، دانشگاه چمران

چکیده

در این پژوهش، الگوریتم خفاش به‌عنوان الگوریتمی مبتنی بر سرعت و مکان خفاش‏ها در بهینه‏سازی پارامترهای مدل غیرخطی ماسکینگام برای روندیابی سیلاب استفاده شده است. به‌منظور بررسی کارایی این الگوریتم، مطالعۀ موردی سیل ویلسون و همچنین یک سیل تاریخی از منطقۀ لیقوان به‌منظور روندیابی سیلاب و محاسبۀ پارامترهای مدل ماسکینگام انتخاب شد. مجموع مربعات انحرافات و مجموع قدر مطلق انحرافات بین دبی‏های روندیابی‌شده و مشاهداتی، به‌عنوان توابع هدف در نظر گرفته شد. بر اساس نتایج به‏دست‏آمده از روندیابی سیل ویلسون با استفاده از الگوریتم خفاش، مقادیر این توابع هدف به‌ترتیب برابر 14/35 و 76/22 مترمکعب بر ثانیه است. نتایج روندیابی سیل لیقوان با الگوریتم خفاش نیز نشان داد مجموع مربعات انحرافات، مجموع قدر مطلق انحرافات و تفاوت بین دبی‏های اوج مشاهداتی و روندیابی‌شده به‌ترتیب برابر 24/7، 23/6 و صفر متر‌مکعب بر ثانیه است. در تحقیق حاضر، عملکرد الگوریتم خفاش با الگوریتم‏های تکاملی نظیر الگوریتم ژنتیک، ازدحام ذرات و هارمونی مقایسه شد. نتایج بیان‌کنندۀ برتری روش خفاش برای محاسبۀ دقیق پارامترهای مدل ماسکینگام و پیش‏بینی دقیق سیلاب است. بنابراین، از دستاوردهای تحقیق حاضر می‏توان به معرفی روش الگوریتم خفاش برای حل مسائل مرتبط با هیدرولوژی و مدیریت منابع آب اشاره داشت به‏گونه‏ای که در بسیاری از این مسائل با توابع هدف غیرخطی و قیود پیچیده مواجهیم که الگوریتم یادشده پاسخ‌های با‌کیفیت در کمترین زمان ممکن را دارد.

کلیدواژه‌ها

موضوعات


[1]. Das, A.. Parameter estimation for Muskingum models. Journal of Irrigation and Drainage Engineering. ASCE. (2004); 130(2): 140-147.
[2]. Ponce, V.M. and Lugo, A.. Modeling looped ratings in Muskingum-Cunge routing. Journal of Hydrologic Engineering (ASCE). (2001); 6(2): 119-124.
                                                   
[3]. Chu, H.J. and Chang L.C.. Applying particle swarm optimization to parameter estimation of the nonlinear Muskingum model. Journal of Hydrologic Engineering (ASCE). (2009); 14(9):1024-1027.
 
[4]. Al-Hummed, J.M. and Essen, I.I. Approximate methods for the estimation of Muskingum flood routing parameters. Water Resources Management. (2006); 20: 979-990.
 
[5]. Geem, Z..Parameter Estimation for the Nonlinear Muskingum Model using the BFGS Technique. Irrigation and Drainage Engineering. ASCE. (2006); 132(5): 474-478.
 
[6]. Wang, G.T. and Chen, S. A semianalytical solution of the Saint-Venant equations for channel flood routing. Journal ofWater Resources Research. (2003); 39(4): 1-10.
 
[7]. Mohan, S. Parameter estimation of nonlinear Muskingum models using Genetic Algorithm. Hydraulic Engineering (ASCE). (1997);132(2): 137-142.
 
[8]. Xu, D.M., Qiu, L. and Chen, S.Y. Estimation of nonlinear Muskingum model parameter using differential evolution. Journal of Hydrologic Engineering (ASCE). (2011);17: 348-353.
 
[9]. Kim, J.H., Geem, Z.W. and Kim, E.S.. Parameter estimation of the nonlinear Muskingum model using Harmony Search, Journal of The American Water Resources Association. (2001);37: 1131-1138.
 
[10]. Orouji, H., Bozorg-Haddad, O., Fallah-Mehdipour, E. and Mariño, M.A.,. Flood routing in branched river by genetic programming. Water Management. (2012); 167(2): 115-123.
 
[11]. Ouyang, A., Liu, L. and Li, K.. GPU-based variation of parallel invasive weed optimization algorithm for 1000D functions. Natural Computation (ICNC). 10th International Conference. (2014);19-21 August. Xiamen.
 
[12]. Yang, X.S. and Gandomi, A.H. Bat algorithm: A novel approach for global engineering optimization. Engineering Computations. (2012); 29(5): 464–483.
 
[13]. Ahmadianfar, I., Adib, A., and Salarijazi, M. Optimizing multireservoir operation: Hybrid of bat algorithm and differential evolution. J. Water Resour. Plann. Manage. (2015);, 10.1061/(ASCE)WR.1943-5452.
 
[14]. Yang, X.S. A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NISCO 2010), J. R. Gonzalez, et al. Eds., Springer, Berlin, (2010) 284: 65-74.
 
[15]. Yang, X.S. Meta-heuristic optimization with applications: Demonstration via bat algorithm. Proc. 5th Bioinspired Optimization Methods and Their Applications (BIOMA2012), Bohinj, Slovenia, pp. (2012); 23–34.
 
[16]. Yoon, J.W. and Padmanabhan, G. Parameter estimation of linear and nonlinear Muskingum models. Water Resources Planning and Management (ASCE). (1993); 119(5): 600-610.
 
[17]. Ghafari, A., Fakheri, A.Flood routing based on hydraulic model and hydrologic model. Water and soil. (2011); 201 (3):48-70 (In Persian).
 
[18]. Barati, R. Discussion of ‘Parameter estimation of the nonlinear Muskingum model using parameter-setting-free harmony search’ by Z. W. Geem. J. Hydrology. (2012);.1943-5584
.
[19]. Barati, R. Application of Excel solver for parameter estimation of the nonlinear Muskingum models. KSCE J. Civil. Engineering., (2013);17(5), 1139–1148.
 
[20]. Barati, R. Closure to ‘Parameter estimation of nonlinear Muskingum model using Nelder-Mead simplex algorithm’ by R. Barati. J. Hydrol. Eng. (2013);, 367–370.
 
[21]. Easa, S. M. Multi-criteria optimisation of the Muskingum flood model: A new approach. Proc. ICE Water Manage., (In Persian). (2014). 16(4):214-228
 
[22]. Easa, S. M. Versatile Muskingum flood model with four variable parameters. Proc. ICE - Water Manage., (2014);168(3): 139–148.
دوره 4، شماره 4
دی 1396
صفحه 1025-1032
  • تاریخ دریافت: 05 فروردین 1396
  • تاریخ بازنگری: 24 مرداد 1396
  • تاریخ پذیرش: 14 مرداد 1396
  • تاریخ اولین انتشار: 01 دی 1396
  • تاریخ انتشار: 01 دی 1396