ارزیابی ویژگی‏ های هیدروشیمیایی و کیفیت آب چشمه‏ ها و چاه‏ های محدودۀ دریاچۀ زریوار

نوع مقاله : پژوهشی

نویسنده

استادیار گروه مهندسی مرتع و آبخیزداری، دانشکدۀ منابع طبیعی، دانشگاه کردستان

چکیده

این پژوهش با هدف بررسی ویژگی‏های فیزیکوشیمیایی، هیدروژئوشیمیایی، رخساره‏های هیدروشیمیایی، تعادل ترمودینامیکی، مکانیسم‌های کنترل‌کنندۀ وضعیت شیمیایی آب هفت چشمه و 15 چاه محدودۀ دریاچۀ زریوار بر اساس 15 متغیر کیفیت آب طی سال‌های 1377 تا 1392 و همچنین مقایسۀ کیفیت آب چشمه‏ها و چاه‌ها و تغییرات فصلی آنها انجام شد. تحلیل‏ها و مقایسات آماری بر اساس نمودارهای پایپر، شولر، دورو، لودویگ-لنگلایر، ویلکوکس و گیبس، نسبت‌های یونی مختلف، شاخص‏های اشباع و آزمون‏های ویلکاکسون و من-ویتنی انجام گرفت. یون‌های فراوان شامل بی‌کربنات، کلسیم و منیزیم است که دلیل آن انحلال سنگ‌های کربناته در منطقۀ تغذیۀ آب‌های زیرزمینی است. نسبت کلسیم به منیزیم در آب همۀ چشمه‏ها و چاه‌ها به‌دلیل انحلال کانی‏های سیلیکاته بین دو تا نُه، سختی آب بیشتر از 300 میلی‏گرم در لیتر کربنات کلسیم یا به‌بیانی خیلی سخت بود. دو رخسارۀ هیدروشیمیایی اصلی شامل کلسیم- منیزیم- بی‌کربنات و کلسیم- منیزیم- بی‌کربنات- سولفات بود که نتیجۀ فرایندهای تغییردهندۀ شیمی آب طی مسیر جریان و سنگ‏شناسی تشکیلات زمین‏شناسی زیرین منطقه است. نسبت‌های یونی Mg/Ca در برابر Cl و نمودارهای گیبس بیان می‌کند که اهمیت فراوان مکانیسم‏های تعامل سنگ و آب، تبادل کاتیونی و انحلال کانی‏های کربنات و سیلیکات در تعیین کیفیت شیمیایی آب چشمه‏ها و چاه‌های منطقه بود.

کلیدواژه‌ها

موضوعات


[1] Walton WC. Groundwater resources evaluation. Mc Graw Hill Book Co, New York; 1970.
[2] Joshi BK. Hydrology and nutrient dynamic of spring of almora–binsar area, indian central himalaya: landscapes, practices, and management. Water Resources. 2006; 33(1): 87–86.
[3] Martos-Rosillo S, Moral F. Hydrochemical changes due to intensive use of groundwater in the carbonate aquifers of Sierra de Estepa (Seville, southern Spain). Journal of Hydrology. 2015; 528: 249–263.
[4] Zheng Q, Ma M, Wang Y, Yan Y, Liu L, Liu L. Hydrochemical characteristics and quality assessment of shallow groundwater in Xincai River Basin, Northern China. Procedia Earth and Planetary Science. 2017; 17: 368-371.
[5] Niu N, Wang H, Loáiciga HA, Hong S, Shao W. Temporal variations of groundwater quality in the Western Jianghan Plain, China. Science of the Total Environment. 2017; 578(1): 542-550.
[6] Malki M, Bouchaou L, Hirich A, Brahim YA, Choukr-Allah R. Impact of agricultural practices on groundwater quality in intensive irrigated area of Chtouka-Massa, Morocco. Science of the Total Environment. 2017; 574: 760–770.
[7] Ebadati N. Qualitative trend of groundwater resources Eyvanakey plain. Iranian Journal of Ecohydrology. 2015; 2(4): 383-394. [Persian].
[8] Najafzadeh H, Zehtabian Gh, Khosravi H, Golkarian A. The Effect of Climatic and Geology Parameters on Groundwater Resources Quantitative and Qualitative (Case Study: Mahvelat). Iranian Journal of Ecohydrology. 2015; 2(3): 235-336. [Persian].
[9] Zaree A, Amiri MJT. Assessing the spatial and zoning of drinking and irrigation water quality using the geostatistics technique and GIS. Iranian Journal of Ecohydrology. 2016; 3(4): 505-516. [Persian].
[10] Department of Natural Resources in Kurdistan Province, Implementation - detailed studies of Zarivar watershed, Marivan, Volume VII (Groundwater), 2007. P. 49.
[11] Department of Natural Resources in Kurdistan Province, Implementation - detailed studies of Zarivar watershed, Marivan, Volume III (Geology and Geomorphology), 2007. P. 63.
[12] Fantong WY, Fouépé AT, Serges I, Djomou LB, Banseka HS, Anazawa K, SMA A, Mendjo JW, Aka FT, Ohba T, Hell JV, Nkeng GE. Temporal pollution by nitrate (NO3), and discharge of springs in shallow crystalline aquifers: Case of Akok Ndoue catchment, Yaounde (Cameroon). African Journal of Environmental Science and Technology. 2013; 7(5): 175-191.
[13] Maya AL, Loucks MD. Solute and isotopic geochemistry and groundwater flow in the central Wasatch range, Utah. Journal of Hydrology. 1995; 172: 31–59.
[14] Katz BG, Coplen TB, Bullen TD, Davis JH. Use of chemical and isotopic tracer to characterize the interactions between groundwater and surface water in mantled karst. Groundwater. 1997; 35(6): 1014–1028.
[15] Dehghani F, Rahnamayi R, Malekooti J, Saadat S. Evaluation of calcium to magnesium ratio in some country irrigation water. Journal of Water Research in Agriculture. 2013; 23(1): 117-129.
[16] Memon M, Soomro M, AkhtarKazi MS, Memon S. Drinking water quality assessment in Southern Sindh (Pakistan). Environmental Monitoring and Assessment. 2011; 177(1): 39-55.
[17] Piper AMA. Graphical procedure in the geochemical interpretation of water analysis. EOS Trans. Am. Geophys. Union. 1994; 25: 914–928.
[18] Azizi M. Hydrogeology and hydrogeochemistry of Marivan and Ghezelchesoo plain. Ms.C thesis. Tarbiat Modares University. Basic science faculty. 2013.
[19] Elliott T, Andrews JN, Edmunds WM. Hydrochemical trends, palaeorecharge and groundwater ages in the fissured chalk aquifer of the London and Berkshire Basins, UK. Applied Geochemistry. 1999; 14: 333–363.
[20] McIntonsh JC, Walter LM. Paleowaters in Silurian–Devonian carbonate aquifers: geochemical evolution of groundwater in the Great Lakes region since the Late PleistoceneGeochimica et Cosmochimica Acta. 2006; 70: 2454–2479.
[21] Ansari AMD, Deodhar A, Kumar US, Khatti VS. Water quality of few springs in outer Himalayas – A study on the groundwater bedrock interactions and hydrochemical evolution. Groundwater for Sustainable Development. 2015; 1: 59–67.
[22] White WB. Geomorphology and Hydrology of Karst Terrains. Oxford University Press, New York, 1988.
[23] Wilcox LV. Classification and use of irrigation waters, US Department of Agriculture, Washington Dc, 1995.
[24] Langmuir D. Aqueous environmental geochemistry. Prentice Hall Inc. Upper Saddle River, NJ, 1997.
دوره 4، شماره 4
دی 1396
صفحه 1049-1060
  • تاریخ دریافت: 20 اسفند 1395
  • تاریخ بازنگری: 30 خرداد 1396
  • تاریخ پذیرش: 16 خرداد 1396
  • تاریخ اولین انتشار: 01 دی 1396
  • تاریخ انتشار: 01 دی 1396