تصحیح دبی حداکثر سالانه بر اساس انتخاب مناسب‌ترین تابع توزیع احتمال در جنوب ایران

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مرتع و آبخیزداری، دانشکدۀ کشاورزی و منابع طبیعی، دانشگاه هرمزگان، بندرعباس

2 استادیار، گروه مرتع و آبخیزداری، دانشکدۀ کشاورزی و منابع طبیعی، دانشگاه هرمزگان، بندرعباس

3 دانشیار، گروه مرتع و آبخیزداری، دانشکدۀ منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان

4 دانشیار، گروه مرتع و آبخیزداری، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج

چکیده

‌پژوهش حاضر با هدف انتخاب بهترین تابع توزیع آماری برای دبی‏های حداکثر سالانه در استان‏های جنوبی کشور ایران (سیستان و بلوچستان، فارس، کرمان، بوشهر و هرمزگان) از داده‏های روزانۀ دبی 108 ایستگاه هیدرومتری (طول دورۀ آماری 1362‌ـ 1391) استفاده و داده‏های یادشده با 65 تابع توزیع آماری موجود برازش داده شد و پس از انجام آزمون‏های نکویی برازش با استفاده از محاسبات آماری، بهترین تابع توزیع آماری برای دبی‏های حداکثر سالانه تعیین شد و در نهایت مقادیر بزرگی دبی با دورۀ بازگشت‏های مختلف محاسبه و با نتایج به‌دست‌آمده از توابع توزیع مرسوم شامل لوگ پیرسون سه‌پارامتره، لوگ نرمال سه‌پارامتره و توزیع ویکبای مقایسه شد. نتایج نشان داد در همۀ استان‏های جنوبی کشور، تابع توزیع ویکبای با 2/43 درصد رتبۀ اول، تابع توزیع لوگ پیرسون سه‌پارامتره با فراوانی 6/13 درصد رتبۀ دوم و توزیع آماری لوگ نرمال سه‌پارامتره با فراوانی 5/6 درصد رتبۀ سوم بهترین توزیع آماری را به خود اختصاص داده‌اند. شاخص میانگین خطای اریب (MBE) در برآورد دبی حداکثر سالانه نشان داد در دورۀ بازگشت‏های 2، 5 و 10 سالۀ توزیع آماری ویکبای و در دورۀ بازگشت‏های 25، 50 و 100 سالۀ توزیع آماری لوگ پیرسون سه‌پارامتره برآورد بهتری داشته است. همچنین با مقایسۀ شاخص جذر میانگین مربع خطا (RMSE) و متوسط قدر مطلق درصد خطا (MAPE) در دو توزیع آماری ویکبای و لوگ پیرسون سه‌پارامتره مشخص شد که در دورۀ بازگشت‏های مختلف توزیع آماری ویکبای برآورد بهتری از لحاظ این شاخص داشته است. بنابراین، در مناطق جنوبی کشور، کاربرد توزیع ویکبای در تحلیل فراوانی وقوع سیلاب به‏منظور پیش‏بینی دقیق‏تر مقادیر دبی حداکثر سالانه در دورۀ بازگشت‏های مختلف، می‏تواند راهگشا باشد.

کلیدواژه‌ها

موضوعات


 [1]. Pacione M. The principles and practice of applied geography. In A. Bailly & L. J. Gibson (Eds.), Applied Geography: A World Perspective. 2003; pp. 23–45. Dordrecht: Springer Netherlands. doi:10.1007/978-1-4020-2442-9_3.
[2]. Norozi GH, Sharifi F. Integrated management of watersheds key to the development of biological resources. Journal of Forest and Range. 2002; 56(56): 22- 31. (Persian)
[3]. Yousefi H, Mohammadi A. Evaluation of River Discharges and Water Quality of Badvi Station in Ardebil’s Qarehsou River (Case study: Badvi Station). Extension and Development of Watershed Management. 2017; 4(15): 1- 9. (In Persian)
[4]. Alizadeh A. Principles of applied Hydrology. 17nd ed. Mashhad University of Imam Reza. 2004. (In Persian)
[5]. Chow V, Maidment D, Mays L. frequency analysis. Journal of Applied Hydrology. 1998; p. 572. McGraw-Hill Science/Engineering/Math.
[6]. Khani J. Regional flood frequency analysis and empirical study in order to select the most appropriate method for estimating areas without gauging stations. 2003. Final Report on research projects of the Ministry of Agriculture, 88 p.
[7]. Patra, K. C. (2008). Hydrology and Water Resources Engineering (2nd ed.). Alpha Science Intl Ltd.
[8]. Rostami R, Sedghi H, Motamedi A. Dez Basin Flood Frequency Analysis. Journal Management System. 2010; 2(3): 61- 70. (In Persian)
[9]. Mahdavi M. Applied Hydrology. 3nd ed. Tehran University Press. 2003. (In Persian)
[10]. Salajegheh A, Mahdavi M, Khosravi M. Determination of Suitable Probability Distribution Models for Annual Peak Discharge (Case Study: Central Alborz Region). Journal of Watershed Management Research. 2010; 1(1): 88- 96. (In Persian)
[11]. Arabi Khedri M. Evaluation of peak flows in the watersheds of northern Alborz. 1991. Master's thesis, Department of Natural Resources, Tehran University, 120 p.
 [12]. Moaven Hashemi A, Regional flood analysis in North Khorasan. Publication Nivar. 1997; 25(1): 11- 17. (In Persian)
[13]. Keshtekar AR. Peak theoretical risk assessment for minimum, medium and maximum use of the L moment in the central areas of Iran. Master's thesis, Department of Natural Resources, Tehran University. 2002; 113 p.
[14]. Eslami H. The estimated peak discharge using experimental methods in Lorestan province. MS Thesis, Department of Natural Resources, Tehran University. 2006; 130 p.
 [15]. Meftah Halaghi M, Zangane ME, Aghili R. The comparison of the most suitable statistic distribution dependencies related to maximum daily discharge and the maximum 24 hours rainfall (case study of Gonbad Kavoos hydrometric station).5th National Congress of Watershed Management Engineering of Iran, 2009.
[16]. Campbell A. Flood frequency analysis of small forested watersheds for culvert design, M. Sc. thesis, 1981; 112 p.
[17]. Feaster TD, Tasker GD. Techniques for estimating the magnitude and frequency of floods in rural basins of South Carolina, 1999. Atlanta, Georgia.1993.
[18]. Parida BP, Kachroo RK, Shrestha DB. Regional Flood Frequency Analysis of Mahi-Sabarmati Basin (Subzone 3-a) using Index Flood Procedure with L-Moments. Water Resources Management. 1998; 12(1), 1–12.
[19]. Ebrahim HM, Isiguzo E A. Flood frequency analysis of Gurara River catchment at. Scientific Research and Essay. 2009; 4(6), 636–646.
[20]. Soler M, Regüés D, Latron J, Gallart F. Frequency–magnitude relationships for precipitation, stream flow and sediment load events in a small Mediterranean basin (Vallcebre basin, Eastern Pyrenees). 2007;Catena 71 164–171.
[21]. McMahon, T.A. and Srikanthan, R. Log Pearson III distribution-Is it applicable to flood frequency analysis of Australian streams? Journal of Hydrology. 1981; 52: 139-147.
[22]. Gupta, I.D. and Deshpande, V.c. Appliation oflog-Pearson type-Ill distribution for evaluating design earthquake magnitudes. Journal of the Institution of Engineers (India), Civil Engineering Division, 1994; 75: 129-134.
[23]. Ahmad, M. I., C. D. Sinclair, and A. Werritty. "Log-logistic flood frequency analysis. Journal of Hydrology. 1998; 3 (4): 205-224.
[24]. Vogel, Richard M., and Charles N. Kroll. "Low-flow frequency analysis using probability-plot correlation coefficients." Journal of Water Resources Planning and Management. 1989; 15(3): 338-357.
[25]. Greenwood JA, Landwehr JM, Matalas NC, Wallis JR.1979. “Probability Weighted Moments: Definition and Relation to Parameters of Several Distributions Expressible in Inverse Form”, Water Resources Research. 1979; 15(5): 1049-1054.
[26]. Ahmadi F, Radmanesh F, Parham GhA, Mirabbasi Najafabadi R. Comparison of conventional and intelligent in joint function parameter estimation for multivariate analysis of the current minimum frequency (case study catchment dose). ECOHYDROLOGY. 2017; 4(2): 315- 329. (In Persian)
[27]. Houghton JC. Birth of a parent: the Wakeby distribution for modeling flood flow. Water Resources Research. 1978; 14(6): 1105-1109.
[28]. Landwehr JM, Matalas NC. “Estimation of parameters and Quantiles of Wakeby Distributions. 2. Unknown Lower Bounds”, JRR. 1979; 15(6): 1373-1379.
[29]. Reis DS, Stedinger JR, Martins ES. Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation. Water Resources Research. 2005; 1:41(10).
[30]. Willmott CJ, Matsuura K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate research. 2005; 30(1):79-82.
[31]. Öztekin T. Estimation of the parameters of Wakeby distribution by a numerical least squares method and applying it to the annual peak flows of Turkish rivers. Water resources management. 2011; 25(5):1299-313.
دوره 4، شماره 4
دی 1396
صفحه 1175-1185
  • تاریخ دریافت: 26 اردیبهشت 1396
  • تاریخ بازنگری: 25 خرداد 1396
  • تاریخ پذیرش: 30 خرداد 1396
  • تاریخ اولین انتشار: 01 دی 1396
  • تاریخ انتشار: 01 دی 1396