شبیه‏ سازی جریان سطحی از طریق کوچک‌مقیاس‏ سازی آماری داده ‏های اقلیمی: حوضۀ دریاچۀ‏ ارومیه

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکدۀ مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان

2 دانشیار، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج

3 استاد، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج

چکیده

با توجه به اهمیت بررسی پدیدۀ تغییر اقلیم، حوضۀ دریاچۀ ارومیه به عنوان یکی از حوضه‏های مهم آبخیز کشور به لحاظ اهمیتی که از جنبه‏های گوناگون زیست‌محیطی، اقتصادی، اجتماعی و غیره دارد، برای مطالعۀ تغییر اقلیم و آثار آن بر جریان سطحی انتخاب شد. در پژوهش حاضر به‌منظور شبیه‏سازی متغیرهای اقلیمی در دوره‏های آتی، خروجی‏های مدل گردش عمومی جوّ HadCM3 تحت دو سناریوی A2 و B2 با استفاده از روش SDSM برای دورۀ 2041ـ 2070 میلادی کوچک‌مقیاس شد و سپس با استفاده از مدل هیدرولوژیکی IHACRES جریان سطحی در مقیاس محلی شبیه‏سازی شد. نتایج کوچک‌مقیاس‏سازی نشان داد بارندگی در دورۀ 2041ـ 2070 میلادی به میزان 1/0 میلی‏متر در روز تحت سناریوی A2 کاهش خواهد یافت و تحت سناریوی B2 ‌افزایشی معادل 03/0 میلی‌متر خواهد داشت. کاربرد مدل HadCM3 در حوضه نشان داد دما در دورۀ 2041ـ 2070 میلادی به میزان 2/1 و 1/1 درجۀ سانتی‏گراد به‌ترتیب تحت سناریوهای A2 و B2 افزایش خواهد یافت. نتایج شبیه‏سازی جریان سطحی توسط مدل IHACRES نشان داد جریان سطحی در دورۀ آتی به میزان 6/24 درصد تحت سناریوی A2 افزایش و به میزان 6/4 درصد تحت سناریوی B2 کاهش می‏یابد. بر اساس ارزیابی‏های سناریوهای اقلیمی، تغییر اقلیم آثار متفاوتی بر منابع آب حوضه خواهد داشت که مطالعۀ آثار با روش‏های مختلف نتایج بهتری را برای تصمیم‏گیران به‌منظور مدیریت حوضه فراهم می‌کند.

کلیدواژه‌ها

موضوعات


[1]. Field CB, Barros VR, Dokken D, Mach K, Mastrandrea M, Bilir T, et al. IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA; 2014.
[2]. Qin D, Chen Z, Averyt K, Miller H, Solomon S, Manning M, et al. IPCC, 2007: Summary for Policymakers. 2007.
[3].           Kabiri R, Bai VR, Chan A. Assessment of hydrologic impacts of climate change on the runoff trend in Klang Watershed, Malaysia. Environmental Earth Sciences. 2015;73(1):27-37.
 
[4].           Afrooz A, Akbari H, Rakhshandehroo G, Pourtouiserkani A. Climate change impact on probable maximum precipitation in Chenar-Rahdar River Basin. Watershed Management 2015. 2015:36.
[5].           Liu J, Yuan D, Zhang L, Zou X, Song X. Comparison of three statistical downscaling methods and ensemble downscaling method based on Bayesian Model averaging in upper Hanjiang River Basin, China. Advances in Meteorology. 2015;2016.
[6].           Wilby RL, Dawson CW. The statistical downscaling model: insights from one decade of application. International Journal of Climatology. 2013;33(7):1707-19.
[7].  Bozkurt D, Sen OL. Climate change impacts in the Euphrates–Tigris Basin based on different model and scenario simulations. Journal of hydrology. 2013;480:149-61.
[8].           Etemadi H, Samadi S, Sharifikia M. Uncertainty analysis of statistical downscaling models using general circulation model over an international wetland. Climate dynamics. 2014;42(11-12):2899-920.
[9].           Farzaneh MR, Eslamian S, Samadi SZ, Akbarpour A. An appropriate general circulation model (GCM) to investigate climate change impact. International Journal of Hydrology Science and Technology. 2012;2(1):34-47.
[10].            Ficklin DL, Luo Y, Luedeling E, Zhang M. Climate change sensitivity assessment of a highly agricultural watershed using SWAT. Journal of Hydrology. 2009;374(1):16-29.
[11].            Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H. Assessing the impact of climate change on water resources in Iran. Water resources research. 2009;45(10).
[12].            Samadi S, Carbone GJ, Mahdavi M, Sharifi F, Bihamta M. Statistical downscaling of river runoff in a semi arid catchment. Water resources management. 2013;27(1):117-36.
[13].            Ashraf Vaghefi S, Mousavi S, Abbaspour K, Srinivasan R, Yang H. Analyses of the impact of
climate change on water resources components, drought and wheat yield in semiarid regions: Karkheh River Basin in Iran. Hydrological Processes. 2014;28(4):2018-32.
[14].            Abbasnia M, Tavousi T, Khosravi M. Assessment of future changes in the maximum temperature at selected stations in Iran based on HADCM3 and CGCM3 models. Asia-Pacific Journal of Atmospheric Sciences. 2016;52(4):371-7.
[15].            Zarghami M, Abdi A, Babaeian I, Hassanzadeh Y, Kanani R. Impacts of climate change on runoffs in East Azerbaijan, Iran. Global and Planetary Change. 2011;78(3):137-46.
[16].            Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, et al. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate dynamics. 2000;16(2):147-68.
[17].            Houghton JT, Albritton D, Meira Filho L, Cubasch U, Dai X, Ding Y, et al. Technical summary of working group 1: Cambridge University Press; 2001.
[18].            Wilby R, Dawson C. Using SDSM Version 4.1 SDSM 4.2. 2—a decision support tool for the assessment of regional climate change impacts. User Manual, Leicestershire, UK. 2007.
[19].            Croke B, Littlewood I. Comparison of alternative loss modules in the IHACRES model: an application to 7 catchments in Wales. 2005.
[20].            Littlewood I. Down,. K, Parker, JR & Post, DA 1999. IHACRES V1 0 User Guide.
[21].            Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. 2007;50(3):885-900.
دوره 5، شماره 2
تیر 1397
صفحه 419-431
  • تاریخ دریافت: 05 خرداد 1396
  • تاریخ بازنگری: 29 مهر 1396
  • تاریخ پذیرش: 30 آبان 1396
  • تاریخ اولین انتشار: 01 تیر 1397
  • تاریخ انتشار: 01 تیر 1397