استفاده از تئوری آنتروپی و آزمون گاما در تعیین متغیر‌های ورودی برای تخمین تبخیر روزانه (مطالعۀ موردی: ایستگاه ‏های سینوپتیک رشت، بندرانزلی و آستارا)

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی منابع آب، دانشکدۀ کشاورزی، دانشگاه تبریز

2 دانشیار گروه مهندسی منابع آب، دانشکدۀ کشاورزی، دانشگاه تبریز

3 استادیار گروه مهندسی منابع آب، دانشکدۀ کشاورزی، دانشگاه تبریز

چکیده

در این تحقیق قابلیت تئوری آنتروپی و آزمون گاما برای تعیین ورودی مدل‏های شبکۀ عصبی مصنوعی و ماشین بردار پشتیبان به منظور تخمین تبخیر ایستگاه‌های سینوپتیک رشت، آستارا و بندر انزلی در استان گیلان بررسی شده است. با توجه به نتایج پژوهش، برای ایستگاه‌های سینوپتیک رشت، آستارا و انزلی، تئوری آنتروپی وجود همۀ متغیرها را در مدل‏سازی مؤثر تشخیص داده است. آزمون گاما برای ایستگاه رشت دو متغیر رطوبت حداکثر و رطوبت متوسط، برای ایستگاه انزلی سه متغیر دمای حداقل، دمای متوسط و رطوبت متوسط و برای ایستگاه آستارا یک متغیر سرعت باد را از ترکیب بهینه خارج کرد. بنا بر نتایج، عملکرد هر دو مدل شبکۀ عصبی مصنوعی و ماشین بردار پشتیبان در هر دو بخش قابل قبول بوده است. در تعیین تک‌ورودی در ایستگاه رشت روش تئوری آنتروپی و در ایستگاه انزلی روش آزمون گاما بهتر عمل کرده‏اند. برای ایستگاه آستارا هر دو روش عملکرد مناسبی داشته‏اند. به طور کلی، با توجه به نتایج می‏توان گفت که تئوری آنتروپی نسبت به آزمون گاما عملکرد قوی‏تری داشته است.

کلیدواژه‌ها

موضوعات


[1]. Ejlali F, Weather and climatology. Iran: Payamnoor University Press; 2004. (In Persian)
[2]. Nourani V, Baghanam AH, Adamowski J, Kisi O. Applications of hybrid wavelet–Artificial Intelligence models in hydrology: A review. Journal of Hydrology. 2014; 514:358-77.
[3]. Ahmadi A, Han D, Karamouz M, Remesan R. Input data selection for solar radiation estimation. Hydrological processes. 2009; 23(19):2754-64.
[4]. Moghaddamnia A, Gousheh MG, Piri J, Amin S, Han D. Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Advances in Water Resources. 2009; 32(1):88-97.
 [5]. Sharifi A, Dinpashoh Y, Mirabbasi R. Daily runoff prediction using the linear and non-linear models. Water Science and Technology. 2017:wst2017234.
[6]. Seefi A, Mirlatifi M, Reahi H. Introduction and application of Least Square Support Vector Machine (LSSVM) for simlulation of reference evaporation and uncertainty analysis of results, a case study fo the Kerman city.Irrigation & Water Engineering. 2013; 13 (5):67-78. (In Persian)
[7]. Kim S, Shiri J, Kisi O, Singh VP. Estimating daily pan evaporation using different data-driven methods and lag-time patterns. Water resources management. 2013; 27(7):2267-86.
[8]. Goyal MK, Bharti B, Quilty J, Adamowski J, Pandey A. Modeling of daily pan evaporation in sub-tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert systems with applications. 2014; 41(11):5267-76.
[9]. Tezel G, Buyukyildiz M. Monthly evaporation forecasting using artificial neural networks and support vector machines. Theoretical and applied climatology. 2016; 124(1-2):69-80.
[10]. Kisi O. Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. Journal of Hydrology. 2015; 528:312-20.
[11]. Kisi O, Genc O, Dinc S, Zounemat-Kermani M. Daily pan evaporation modeling using chi-squared automatic interaction detector, neural networks, classification and regression tree. Computers and Electronics in Agriculture. 2016; 122:112-7.
[12]. Keshtegar B, Piri J, Kisi O. A nonlinear mathematical modeling of daily pan evaporation based on conjugate gradient method. Computers and Electronics in Agriculture. 2016; 127:120-30.
[13]. Sharifi A.R, Dinpashih Y, Fahkerifard A, Moghadamnia, AR. Optimum combination of variables for runoff simulation in Amameh Watershed using Gamma Test, Journal of Soil and Water. 2013; 23(3):72-59. (In Persian)
[14]. Durrant PJ. winGamma: A non-linear data analysis and modelling tool with applications to flood prediction. Unpublished PhD thesis, Department of Computer Science, Cardiff University, Wales, UK. 2001 Jun 25.
[15]. Evans D, Jones AJ. A proof of the Gamma test. InProceedings of the Royal Society of London a: Mathematical, Physical and Engineering Sciences 2002 Nov 8 (Vol. 458, No. 2027, pp. 2759-2799). The Royal Society.
[16]. Shannon C. E, & Weaver W, Urban:University of Illinois Press; 1949.
 
[17]. Dawson CW, Abrahart RJ, Shamseldin AY, Wilby RL. Flood estimation at ungauged sites using artificial neural networks. Journal of hydrology. 2006; 319(1):391-409.
[18]. Harmancioglu NB, Alpaslan N. WATER QUALITY MONITORING NETWORK DESIGN: A PROBLEM OF MULTI‐OBJECTIVE DECISION MAKING. JAWRA Journal of the American Water Resources Association. 1992; 28(1):179-92.
[19]. Coulibaly P, Anctil F, Bobee B. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. Journal of Hydrology. 2000; 230(3):244-57.
 
[20]. ASCE Task Committee. Artificial neural networks in hydrology. I: Preliminary concepts. Journal of Hydrologic Engineering. 2000; 5(2):115-23.
[21]. Kavzoglu T, Colkesen I. A kernel functions analysis for support vector machines for land cover classification. International Journal of Applied Earth Observation and Geoinformation. 2009; 11(5):352-9.
[22]. Nash J.E, Sutcliffe I.V. River flow forecasting through conceptual models, Part I, A discussion of principles, Journal of Hydrology. 1970; 10(2):282-290.
دوره 5، شماره 2
تیر 1397
صفحه 535-549
  • تاریخ دریافت: 01 شهریور 1396
  • تاریخ بازنگری: 02 بهمن 1396
  • تاریخ پذیرش: 15 بهمن 1396
  • تاریخ اولین انتشار: 01 تیر 1397
  • تاریخ انتشار: 01 تیر 1397