[1]. Morgan R.P.C. Soil and Water Conservation. Blackwell, 3nd edition. 2005.
[2]. Nosrati K, Feiznia S, Van Den Eeckhaut M, Duiker S.W. Assessment of soil erodibility in Taleghan Drainage Basin Iran, using multivariate statistics. Physical Geography. 2011; 32: 78-96.
[3]. Hakimkhani Sh. An investigation on using tracers in fluvial fine sediment sources fingerprinting (case study: the basin of Pouldasht flood spreading system, Makoo township). PhD thesis. University of Tehran. 2006.
[4]. Gruszowski K.E. Foster I.D.L. Lees J.A. Charlesworth S.M. Sediment sources and transport pathways in a rural catchment, Herefordshire, UK. Hydrological Processes. 2003; 17(13): 2665-2681.
[5]. Maher BA, Watkins SJ, Brunskill G, Alexander J, Fielding CR. Sediment provenance in a tropical fluvial and marine context by magnetic 'fingerprinting' of transportable sand fractions. Sedimentology. 2009; 56: 841–861.
[6]. Foster I.D.L, Lees J.A. Tracers in geomorphology: theory and applications in tracing fine particulate sediments. In: Foster, I.D.L. (Ed.), Tracers in Geomorphology. John Wiley & Sons Ltd; 2000.
[7]. Walling D.E. Tracing suspended sediment sources in catchments and river systems. Science of the Total Environment. 2005; 344: 159–184.
[8]. Oldfield F, Maher B.A, Donaghue J, Pierce J. Particle-size related magnetic source sediment linkages in the Rhode River catchment, Maryland, USA. J. Geol. Soc. 1985; 142: 1035-1046.
[9]. Krein A, Petticrew E, Udelhoven T. The use of fine sediment fractal dimensions and colour to determine sediment sources in a small watershed. Catena. 2003; 53: 165-179.
[10]. Klages M.G, Hsieh Y.P. Suspended solids carried by the Gallatin River of Southwestern Montana II: using mineralogy for inferring sources. J. Environ. Qual. 1975; 4: 68-73.
[11]. Wallbrink PJ, Martin CE, Wilson CJ. Quantifying the contributions of sediment, sediment-P and fertiliser-P from forested, cultivated and pasture areas at the land use and catchment scale using fallout radionuclides and geochemistry. Soil Tillage Res. 2003; 69: 53–68.
[12]. Porto P, Walling DE, Callegari G. Using 137Cs measurements to establish
catchment sediment budgets and explore scale effects. Hydrological Processes. 2011; 25:
886–900.
[13]. Theuring P, Rode M, Behrens S, Kirchner G, Jha A. Identification of fluvial sediment sources in the Kharaa River catchment, Northern Mongolia. Hydrological Processes. 2013; 27: 845-856.
[14]. Fangxin C, Fengbao Z, Nufang F, Zhihua S. Sediment source analysis using the fingerprinting method in a small catchment of the Loess Plateau, China. J. of Soils, Sediments. 2016; 16: 1655–1669.
[15]. Nosrati K, Amini M, Haddadchi A, Zare M.R. Determination of contribution in sediment generation using magnetization properties and uncertainty mixing model (case study: Ashan drainage basin, Maragheh county). J. of Sciences and Technology of Agriculture and Natural Resources. 2017; 78: 141-155. (In Persian)
[16]. Nosrati K. Ascribing soil erosion of hillslope components to river sediment yield. J. of environmental management. 2017; 1(194): 63-72.
[17]. Kachanoski R.G, Dejong E. Predicting the temporal relationship between soil Cs-137 and erosion rate. J. Environ. Qual. 1984; 13(2): 301-304.
[19]. Haddadchi A, Ryder D.S, Evrard O, Olley J. Sediment fingerprinting in fluvial systems: review of tracers, sediment sources and mixing
models. International Journal of Sediment Research. 2013; 28(4): 560-578.
[20]. SPSS, IBM. SPSS Base 14.0 user's guide. Prentice Hall. 2005.
[21]. Nosrati K. Sediment fingerprinting based on uncertainty estimation. Water research of Iran. 2011; 9: 51-60. (In Persian)