ارزیابی سناریوهای مدیریت آب و تأثیر تغییر اقلیم بر پایداری زیست‌محیطی و کشاورزی (مطالعۀ موردی: حوضه‌های آبریز زرینه‌رود و سیمینه‌رود)

نوع مقاله : پژوهشی

نویسندگان

1 استادیار، بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی، ارومیه آموزش

2 استاد، بخش مهندسی عمران، دانشکدۀ فنی و مهندسی، دانشگاه شهید باهنر کرمان

3 دانشیار، بخش مهندسی آب، دانشکدۀ کشاورزی، دانشگاه شهید باهنر کرمان

4 استادیار، گروه مهندسی آب، دانشکدۀ کشاورزی، دانشگاه ارومیه

چکیده

دریاچۀ ارومیه واقع در شمال غربی ایران طی دو دهۀ گذشته هر سال حدود 40 سانتی‏متر افت سطح آب داشته و در حال خشک‌شدن است که این مسئله به عواقب اجتماعی و زیست‏محیطی منجر شده است. در تحقیق حاضر شاخص‏های پایداری زیست‏محیطی و پایداری کشاورزی با استفاده از معیارهای عملکرد تحت تأثیر تغییر اقلیم و راهبردهای مدیریت آب برای حوضه‏های آبریز زرینه‏رود و سیمینه‏رود، به عنوان بزرگ‏ترین زیرحوضۀ دریاچۀ ارومیه ارزیابی شد. مدل‏سازی رفتار هیدرولوژیک این حوضه‏ها با استفاده از نرم‏افزار 21WEAP انجام گرفت. برای شبیه‏سازی تغییرات اقلیمی از مدل ریزمقیاس‌‌نمایی LARS-WG استفاده شد. مدل برای سه سناریوی انتشار آینده (2A، B1A و 1B)، طی دورۀ 2015-2040، و پنج سناریوی مدیریت آب: 1. ادامۀ وضع موجود (0S)، 2. تغییر الگوی کشت (1S)، 3. بهبود راندمان انتقال و توزیع (2S)، 4. ترکیب بهبود راندمان انتقال و توزیع با بهبود راندمان کاربرد با استفاده از تکنولوژی‏های نوین (3S)، و 5. ترکیب تغییر الگوی کشت با بهبود راندمان کل آبیاری (4S) ‌تحلیل شد. نتایج نشان داد بیشترین مقادیر شاخص‏های پایداری زیست‏محیطی و پایداری کشاورزی مربوط به سناریوی ترکیب تغییر الگوی کشت با بهبود راندمان کل آبیاری تحت سناریوی انتشار 1B (4S1B) است. تحت این سناریو، مقدار جریان متوسط سالیانۀ ورودی به دریاچۀ ارومیه از حوضه‏های آبریز زرینه‏رود و سیمینه‏رود به‌ترتیب برابر 1292 و 351 میلیون مترمکعب در سال شده و در نتیجه نیاز زیست‏محیطی دریاچه از این حوضه‏ها تأمین خواهد شد.

کلیدواژه‌ها

موضوعات


[1]. Haghighi AT, Kløve B. Design of environmental flow regimes to maintain lakes and wetlands in regions with high seasonal irrigation demand. Ecological Engineering. 2017;100:120-129.
[2]. Shadkam S, Ludwig F, van Vliet MT, Pastor A, Kabat P. Preserving the world second largest hypersaline lake under future irrigation and climate change. Science of the Total Environment. 2016;559:317-325.
[3]. Richter BD, Brown JD, DiBenedetto R, Gorsky A, Keenan E, Madray C, Morris M, Rowell D, Ryu S. Opportunities for saving and reallocating agricultural water to alleviate water scarcity. Water Policy. 2017;19(5):886-907.
[4]. Heydari N. Assessment of agricultural water productivity (WP) in Iran, and the performance of water policies and plans of the government in this regard. Journal of Majlis and Rahbord. 2014;21(78):177-200. [Persian].
[5]. Shadkam S. Preserving Urmia Lake in a changing world: reconciling anthropogenic and climate drivers by hydrological modelling and policy assessment (Doctoral dissertation). Wageningen University. 2017.
[6]. Li F, Zhang G, Xu YJ. Separating the impacts of climate variation and human activities on runoff in the Songhua River Basin, Northeast China. Water. 2014;6(11):3320-3238.
[7]. Zhai R, Tao F. Contributions of climate change and human activities to runoff change in seven typical catchments across China. Science of The Total Environment. 2017;605:219-229.
[8]. Jalili S, Hamidi SA, Namdar Ghanbari R. Climate variability and anthropogenic effects on Lake Urmia water level fluctuations, northwestern Iran. Hydrological Sciences Journal. 2016;61(10):1759-1769.
[9]. Delavar, M, Babaee, O, Fattahi, I. Evaluation of climate change impacts on Urmia lake water level fluctuations. Journal of Climate Research. 2016;1393(19):53-65. [Persian].
[10]. Goodarzi M, Salahi B, Hosseini A. Performance Analysis of LARS-WG and SDSM Downscaling Models in Simulation of Climate Changes in Urmia Lake Basin. Iranian Journal of Watershed Management Science. 2016;9(31):11-23. [Persian].
 
[11]. Blanco-Gutiérrez, I. Economic-hydrologic analysis of water management strategies for balancing water for nature and water for food: Implications for the Guadiana River Basin. Spain. Doctoral Thesis. Polytechnical University of Madrid. 2010.
[12]. Joyce BA, Mehta VK, Purkey DR, Dale LL, Hanemann M. Modifying agricultural water management to adapt to climate change in California’s central valley. Climatic Change. 2011;109(1):299-316.
[13]. Mehta VK, Haden VR, Joyce BA, Purkey DR, Jackson LE. Irrigation demand and supply, given projections of climate and land-use change, in Yolo County, California. Agricultural Water Management. 2013;117:70-82.
[14]. Hunter C, Gironás J, Bolster D, Karavitis CA. A dynamic, multivariate sustainability measure for robust analysis of water management under climate and demand uncertainty in an arid environment. Water. 2015;7(11):5928-58.
[15]. Safavi, H., Gol Mohammadi, M. Evaluating the water resource systems performance using fuzzy reliability, resilience and vulnerability. Iran Water Resources Research, 2016;12(1): 68-83. [Persian].
[16]. Yilmaz B, Harmancioglu NB. An indicator based assessment for water resources management in Gediz river basin, Turkey. Water Resources Management. 2010;24(15): 4359-4379.
[17]. Santikayasa IP, Babel MS, Shrestha S, Jourdain D, Clemente RS. Evaluation of water use sustainability under future climate and irrigation management scenarios in Citarum River Basin, Indonesia. International Journal of Sustainable Development & World Ecology. 2014;21(2):181-194.
[18]. Yekom Consulting Engineers. Water consumption reduction of agricultural sector in Simineh Roud and Zarrineh Roud watershed basin. Urmia Lake Restoration National Committee, Ministry of Energy. 2016. [Persian].
[19]. Urmia Lake Restoration National Committee. Necessity of Lake Urmia Resuscitation, Causes of Drought and Threats; Report No: ULRP-6-4-3-Rep 1. Tehran, Iran, 2015. [Persian].
[20]. Yates D, Sieber J, Purkey D, Huber-Lee A. WEAP21—A demand-, priority-, and preference-driven water planning model: part 1: model characteristics. Water International. 2005;30(4):487-500.
[21]. Yates D, Purkey D, Sieber J, Huber-Lee A, Galbraith H. WEAP21—A demand-, priority-, and preference-driven water planning model: part 2: aiding freshwater ecosystem service evaluation. Water International. 2005;30(4):501-512.
[22]. Ahmadaali J, Barani GA, Qaderi K, Hessari B. Calibration and validation of model WEAP21 for Zarrinehrud and Siminehrud river basins. Iranian Journal of Soil and Water Research. 2017; 48(4): 823-839. [Persian].
[23]. Intergovernmental Panel on Climate Change. IPCC Fourth Assessment Report. Climate Change: Synthesis Report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2007.
[24]. Agriculture Jihad Organization of West Azarbaijan. Agricultural statistics and the information center, Urmia, Iran. 2016. [Persian].
[25]. Agriculture Jihad Organization of Kurdistan. Agricultural statistics and the information center, Sanandaj, Iran. 2016. [Persian].
[26]. West Azarbaijan Regional Water Authority. 2017. from http://www.agrw.ir. [Persian].
[27]. Iran Ministry of Energy, Deputy of Water and WasteWater, Macro Planning Bureau. The Comprehensive Water Management in the Aras, Sefidrood, between Sefidrood and Haraz, Atrac and Urmia Basins_Agricultural Water Use Study in Urmia Lake Basin; Report Number: 2385070-4420-19464; Iran Ministry of Energy: Tehran, Iran. 2013.
[28]. Srdjevic Z, Srdjevic B. An extension of the sustainability index definition in water resources planning and management. Water Resources Management. 2017;31(5):1695-1712.
[29]. Sandoval-Solis S, McKinney DC, Loucks DP. Sustainability index for water resources planning and management. Journal of Water Resources Planning and Management. 2011;137(5):381-390.
[30]. Abbaspour M, Nazaridoust A. Determination of environmental water requirements of Lake Urmia, Iran: an ecological approach. International Journal of Environmental Studies. 2007;64(2):161-169.
دوره 5، شماره 4
دی 1397
صفحه 1203-1217
  • تاریخ دریافت: 12 خرداد 1397
  • تاریخ بازنگری: 02 شهریور 1397
  • تاریخ پذیرش: 25 شهریور 1397
  • تاریخ اولین انتشار: 01 دی 1397
  • تاریخ انتشار: 01 دی 1397