بازطراحی شبکۀ پایش آب زیرزمینی آبخوان کوهدشت

نوع مقاله : پژوهشی

نویسندگان

1 دانشیار، دانشکدۀ علوم و فنون نوین، دانشگاه تهران

2 دانشجوی کارشناسی ارشد اکوهیدرولوژی، دانشکدۀ علوم و فنون نوین، دانشگاه تهران

چکیده

شبکه‏های نظارت طولانی‏مدت آب‏های زیرزمینی می‏توانند اطلاعات لازم برای برنامه‏ریزی و مدیریت منابع آب را فراهم کنند. محدودیت‏های بودجه در سازمان‏های مدیریت منابع آب اغلب به معنای کاهش تعداد چاه‏های مشاهده‏ای موجود در یک شبکۀ پایش آب زیرزمینی است. به دلیل ملاحظات اقتصادی و کاهش هزینه‏های پایش، هدف بهینه‏سازی در پژوهش حاضر، کاهش ایستگاه‏های پایش است. در پژوهش حاضر از الگوریتم فوق ابتکاری ژنتیک در طراحی شبکۀ بهینۀ پایش سطح آب استفاده شد. هدف از انجام بهینه‏سازی، تعیین یک ترکیب بهینه از میان شبکۀ اصلی چاه‏های مشاهده‏ای بود، به‏طوری ‏که امکان کمترین خطای اندازه‏گیری و کمترین فقدان داده و بهترین پراکنش چاه‏ها فراهم شود. با استفاده از الگوریتم بهینه‏سازی ژنتیک شبکۀ پایش آب زیرزمینی منطقه بهینه‏سازی شد. از بین 15 حلقه چاه پیزومتری موجود در دشت کوهدشت، 13 حلقه چاه دارای داده بودند. برای انجام تحقیق حاضر از داده‏های 36 ماه متوالی، یعنی داده‏های 1392ـ 1394 استفاده شد. با استفاده از الگوریتم ژنتیک شبکۀ پایش آب زیرزمینی از نو طراحی شده و چاه‏های مد نظر از بین نقاط پتانسیل انتخاب شدند. درنهایت، نتیجۀ مطلوب و بهینۀ مد نظر از بین نتایج به‌دست‌آمده از تکرارهای مختلف در الگوریتم ژنتیک انتخاب شد و از بین تعداد کل نقاط پتانسیل، 28 چاه کمترین RMSE یعنی 11/0 و بهترین پراکنش را داشتند. موقعیت چاه‏های به‏دست‏آمده با تعدادی از چاه‏های موجود نزدیکی داشت. همچنین، نتیجۀ به‌دست‌آمده با ضوابط طراحی شبکۀ پایش کمی آب زیرزمینی مطابقت دارد که کارآمدی این روش را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


[1]. Akbarzadeh M, Ghahraman B, Davari K. Optimization of Groundwater Quality Monitoring Network of Mashhad Aquifer Using Spatial-Temporal Modeling. Iran Water Resources Research. 2016;12(1), 144-133. [Persian]
[2]. Forughi F, Rezaei M. Optimization of Groundwater Monitoring Network in Tabriz Plain using Geostatistics Method. Quarterly Journal of Environmental Geology. 2012;7(22), 93-103. [Persian]
[3]. Ahmadvand M. Optimal design of the long-term groundwater monitoring system in the Hamedan-Bahar plain using an ant colony and a robust optimization. Master's Thesis, Islamic Azad University, Tehran-North Branch, Faculty of Science. 2013; 1-17. [Persian]
‏[4]. Nakhai M, Amiri V, Ahadi Dolatsara A. Optimization of groundwater monitoring network using ant colony algorithm. 2015; Vol 9, No.4, 174-171. [Persian]
[5]. Hushangi N, Ale sheikh A, Nadiri A. Optimization of the number of piezometers in predicting groundwater level using PCA and geostatistical methods. Journal of Water and Soil Science. 2015; Vol 25, No. 4.2, 66-53. [Persian]
[6]. Ganji Khoram del N, Keikhaei F. Optimal design of observation wells in an groundwater level monitoring network using an genetic algorithm. Watershed management research. 2015; 7(14), 159-166. [Persian]
[7]. Jason C. Fisher, Optimization of Water-Level Monitoring Networks in the Eastern Snake River Plain Aquifer Using a Kriging-Based Genetic Algorithm Method. Prepared in cooperation with the Bureau of Reclamation and U.S. Department of Energy, 2013.
[8]. Dhar, A. and Patil, R.S., “Multiobjective design of groundwater monitoring network under epistemic uncertainty”, Water Resources Management,2012; 26(7), 1809- 1825.
[9]. Ketabchi H, Ataie-Ashtiani B. Evolutionary algorithms for the optimal management of coastal groundwater: A comparative study toward future challenges. Journal of Hydrology, 2015; 193–213.
[10]. Thakur J. Optimizing Groundwater Monitoring Networks Using Integrated Statistical and Geostatistical Approaches. Hydrology. 2015; 2, 148-175.
[11]. Q. Luo, J. Wu, Y. Yang, J. Qian and J. Wu, “Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty. Journal of Hydrology. 2016; 534,, 352–363.
 
[12]. Deepti P, Kyna B, Vance C. Karthikeyan R, Optimization of a Water Quality Using a Spatially Referenced Water Quality Model and a Genetic Algorithm Monitoring Network” Journal of Water, 2017; 3-11.
[13]. Kumar Singh K, Bhaskar Katpata Y. Optimization of Groundwater Level Monitoring Network Using GIS-based Geostatistical Method and Multi-parameter Analysis: A Case Study in Wainganga Sub-basin, India, Chin. Geogra. Sci. 2017; 27 (2), 201–215.
[14]. Bashi-Azghadi, N. and Kerachian, R., Locating monitoring wells in groundwater systems using embedded optimization and simulation models, Science of the Total Environment, 2010; 408(10), 2189-2198
[15]. Pudineh O, Daliri M. Compare some geostatistical interpolation methods and meet certain depth to groundwater (Case study: Iranshahr-Bampour plain), Journal of Water Resources Engineering. 2017; 10, 82-100.
[16]. Mirzaei Nadushan F, Bozorg Hadad A, Khayat Kholghi M. Two Objective design of groundwater level monitoring network using NSGA-II in Eshtehard Plain. Iran Water Researches. 2016; 74(2), 345-354. [Persian]
[17]. Cressie, N.A.C., Statistics for spatial data, John Wiley & Sons; 1991.
[18]. AminZadeh Ghoharrizi B, Tohidi rad S, Asadi R. Application of NSGA-II algorithm for solving multi-objective location problems. Quarterly Journal of Urban Studies. 2016; 19, 15-25. [Persian]
[19]. Karami M, Habibi S, Zhaleh B. Nanocomposite Electromagnetic Absorber Design with Localized Particle Swarm Optimization and Genetic Algorithm Optimization Method. Magazine Research Systems. Nanosciences and Metamaterials from Simulation to Industry. 2015; 93-105. [Persian]
دوره 5، شماره 4
دی 1397
صفحه 1255-1266
  • تاریخ دریافت: 11 اردیبهشت 1397
  • تاریخ بازنگری: 17 شهریور 1397
  • تاریخ پذیرش: 25 شهریور 1397
  • تاریخ اولین انتشار: 01 دی 1397
  • تاریخ انتشار: 01 دی 1397