رشد بلور‏های BiVO4 با روش هیدروترمال و بدون استفاده از جوانه به منظور کاربرد در صنایع تصفیۀ آب و تولید هیدروژن

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری دانشکدۀ علوم و فنون دانشگاه تهران

2 استادیار دانشکدۀ علوم و فنون، دانشگاه تهران

3 دانشیار دانشکدۀ علوم و فنون دانشگاه تهران

چکیده

لایه‌‌های نازک بلورهای بیسموت وانادیت (BiVO4) با استفاده از روش هیدروترمال روی زیرلایۀ بدون پوشش FTO به منظور کاربرد در صنایع تصفیۀ آب و تولید هیدروژن نشانده شده‌اند. نمونه‏ها پس از لایه‌‌نشانی در بازۀ دمایی 450 تا 550 درجۀ سانتی‌گراد پخت شده‏اند. الگوی بلورشناسی اشعۀ ایکس (XRD) که برای لایه‏های بیسموت وانادیت آماده شده، تأیید‌کنندۀ ساختار مونوکلینیک این بلور است. تصاویر میکروسکوپ الکترونی روبشی (SEM) برای بلور، شکل دوهرم‏های برش داده‌شده‏ را نشان می‏دهد که از نظر فوتوالکتروشیمیایی فعال‌اند. با کنترل و بهینه‏سازی پارامترهایی همچون دما، مدت لایه‌نشانی، غلظت محلول پیش‏ماده و دمای پخت نمونه‌ها، لایه‏ای یکنواخت و با چسبندگی زیاد از BiVO4 ایجاد شد. لایۀ بهینۀ BIVO4/FTO در دمای 120 درجۀ سانتی‏گراد در حداقل زمان (چهار ساعت) با به‌کارگیری محلولی به غلظت 27 میلی‏مولار از پیش‌ماده‏های بیسموت وانادیت که در pH معادل 2/1 بود، به دست آمد. به عنوان معیاری از عملکرد کریستال‏های رشد داده‌شده در واکنش‏های تولید هیدروژن و واکنش‏های تجزیۀ آلاینده‏های آلی آب، اندازه‏گیری ولتامتری روبش خطی نمونه‌ها انجام شده و با یکدیگر مقایسه شده‌اند. نتیجۀ تست‏های ولتامتری روبش خطی پاسخ نوری نمونه را به میزان 70 میکروآمپر بر سانتی‏متر مربع در ولتاژ 1 ولت (در مقایسه با الکترود مرجع Ag/AgCl) برای نمونه‏های پخت‌شده در دماهای بیشتر از 500 درجه نشان می‏دهد. همچنین، یک مدل ساده برای درک بهتر رفتار رشد بلورهای BiVO4 تحت شرایط رشد مختلف پیشنهاد شد.

کلیدواژه‌ها

موضوعات


[1]. T. Morgan, The hydrogen economy-a non technical review, (2006).
[2].  C.M. Kalamaras, A.M. Efstathiou, Hydrogen production technologies: current state and future developments, in: Conf. Pap. Sci., Hindawi, (2013).
[3].  S. Kohtani, A.S. Makino, A. Kudo, K. Tokumura, Y. Ishigaki, Photocatalytic degradation of 4-n-nonylphenol under irradiation from solar simulator : Comparison between BiVO4 and TiO2 photocatalysts, Chem. Lett. 31 (2002) 660–661.
[4].  M. Shang, W. Wang, J. Ren, S. Sun, L. Zhang, A novel BiVO4 hierarchical nanostructure: controllable synthesis, growth mechanism, and application in photocatalysis, CrystEngComm. 12 (2010) 1754.
[5].  A.J. Nozik, Photoelectrochemistry: applications to solar energy conversion, Annu. Rev. Phys. Chem. 29 (1978) 189–222.
 
[6].  A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties, J. Am. Chem. Soc. 121 (1999) 11459–11467.
[7].  S. Tokunaga, H. Kato, A. Kudo, Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties, Chem. Mater. 13 (2001) 4624–4628.
[8].  H. Fan, D. Wang, L. Wang, H. Li, P. Wang, T. Jiang, T. Xie, Hydrothermal synthesis and photoelectric properties of BiVO4 with different morphologies: An efficient visible-light photocatalyst, Appl. Surf. Sci. 257 (2011) 7758–7762.
[9].  Y. Hu, W. Chen, J. Fu, M. Ba, F. Sun, P. Zhang, J. Zou, Hydrothermal synthesis of BiVO4/TiO2 composites and their application for degradation of gaseous benzene under visible light irradiation, Appl. Surf. Sci. 436 (2018) 319–326.
[10].            T. Soltani, A. Tayyebi, B. Lee, Enhanced photoelectrochemical (PEC) and photocatalytic properties of visible-light reduced graphene-oxide/bismuth vanadate, Appl. Surf. Sci. 448 (2018) 465–473.
[11].            S. Yousefzadeh, M. Faraji, A.Z. Moshfegh, Constructing BiVO4/Graphene/TiO2 nanocomposite photoanode for photoelectrochemical conversion applications, J. Electroanal. Chem. 763 (2016) 1–9.
[12].            R. Afonso, J.A. Serafim, A.C. Lucilha, M.R. Silva, L.F. Lepre, R.A. Ando, L.H. Dall’Antonia, Photoelectroactivity of bismuth vanadate prepared by combustion synthesis: Effect of different fuels and surfactants, J. Braz. Chem. Soc. 25 (2014) 726–733.
[13].            K. Sayama, A. Nomura, T. Arai, T. Sugita, R. Abe, T. Oi, Y. Iwasaki, Y. Abe, H. Sugihara, Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment, J. Phys. Chem. B. 3 (2006) 11352–11360.
[14].            J. Su, L. Guo, N. Bao, C.A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting, Nano lett. 11 (2011) 4–10.
[15].            J. Choi, T. Song, J. Kwon, S. Lee, H. Han, N. Roy, C. Terashima, A. Fujishima, U. Paik, S. Pitchaimuthu, WO3 nanofibrous backbone scaffolds for enhanced optical absorbance and charge transport in metal oxide (Fe2O3, BiVO4) semiconductor photoanodes towards solar fuel generation, Appl. Surf. Sci. 447 (2018) 331–337.
[16].            L. Wang, W. Wang, W. Zhang, Y. Chen, W. Cao, H. Shi, M. Cao, Superior photoelectrochemical properties of BiVO4 nanofilms enhanced by PbS quantum dots decoration, Appl. Surf. Sci. 427 (2018) 553–560.
[17].            J. Zhang, H. Cui, B. Wang, C. Li, J. Zhai, Q. Li, Preparation and characterization of fly ash cenospheres supported CuO – BiVO4 heterojunction composite, Appl. Surf. Sci. 300 (2014) 51–57.
[18].            Y. Li, Z. Sun, S. Zhu, Y. Liao, Z. Chen, D. Zhang, Fabrication of BiVO4 nanoplates with active facets on graphene sheets for visible-light photocatalyst, Carbon. 94 (2015) 599–606.
[19].            W.J. Jo, J. Jang, K. Kong, H.J. Kang, J.Y. Kim, H. Jun, K.P.S. Parmar, J.S. Lee, Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity, Angew. Chem. 124 (2012) 3147–3151.
[20].            D. Wang, R. Li, J. Zhu, J. Shi, J. Han, X. Zong, C. Li, Photocatalytic water oxidation on BiVO4 with the electrocatalyst as an oxidation cocatalyst: Essential relations between electrocatalyst and photocatalyst, J. Phys. Chem. C. 116 (2012) 5082–5089.
[21].            M. Li, L. Zhao, L. Guo, Preparation and photoelectrochemical study of BiVO4 thin films deposited by ultrasonic spray pyrolysis, Int. J. Hydrogen Energy. 35 (2010) 7127–7133.
[22].            F.F. Abdi, R. van de Krol, Nature and Light Dependence of Bulk Recombination in Co-Pi- Catalyzed BiVO4 Photoanodes, Phys. Chem. C. 116 (2012) 9398-9404.
[23].            J.A. Seabold, K. Choi, Efficient and stable photo-oxidation of water by a Bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst, JACS. 134 (2012) 2186-2192.
[24].            Y.H. Ng, A. Iwase, A. Kudo, R. Amal, Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting, J. Phys. Chem. Lett. 1 (2010) 2607–2612.
[25].            L.H. Mascaro, A. Pockett, J.M. Mitchels, L.M. Peter, P.J. Cameron, V. Celorrio, D.J. Fermin, J.S. Sagu, K.G.U. Wijayantha, G. Kociok-köhn, F. Marken, One-step preparation of the BiVO4 film photoelectrode, J. Solid State Electrochem. 19 (2015) 31–35.
[25].
[26].            J. Su, L. Guo, S. Yoriya, C.A. Grimes, Aqueous growth of pyramidal-shaped BiVO4 nanowire arrays and structural characterization : Application to photoelectrochemical water splitting, Cryst. Growth Des. 10 (2010) 856-861.
[27].            B.-C. Xiao, L.-Y. Lin, J.-Y. Hong, H.-S. Lin, Y.-T. Song, Synthesis of a monoclinic BiVO4 nanorod array as the photocatalyst for efficient photoelectrochemical water oxidation, RSC Adv. 7 (2017) 7547–7554.
[28].            S. Wang, P. Chen, J.-H. Yun, Y. Hu, L. Wang, An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting, Angew. Chemie Int. Ed. 56 (2017) 8500–8504.
[29].            S.S. Patil, M.A. Hassan, D.R. Patil, S.S. Kolekar, One-pot in situ hydrothermal growth of BiVO4/Ag/rGO hybrid architectures for solar water splitting and environmental remediation, Sci. Rep. 7 (2017) 1–12.
[30].            ASTM committee D-1 on paint and related coatings, Materials, and Applications, Standard test methods for measuring adhesion by tape test, ASTM International. (2009).
[31].            Y. Xue, X. Wang, The effects of Ag doping on crystalline structure and photocatalytic properties of BiVO4, Int. J. Hydrogen Energy. 40 (2015) 5878–5888.
 
[32].            D. Wang, H. Jiang, X. Zong, Q. Xu, Y. Ma, G. Li, C. Li, Crystal facet dependence of water oxidation on BiVO4 sheets under visible light irradiation, Chem. Eur. J. (2011) 1275–1282.
[33].            C. Li, P. Zhang, R. Lv, J. Lu, T. Wang, S. Wang, H. Wang, J. Gong, Selective Deposition of Ag3PO4 on Monoclinic BiVO4 (040) for Highly Efficient Photocatalysis, Small. 9 (2013) 3951-3956.
[34].            G. Tan, L. Zhang, H. Ren, J. Huang, W. Yang, A. Xia, Microwave hydrothermal synthesis of N-doped BiVO4 nanoplates with exposed (040) facets and enhanced visible-light photocatalytic properties, Ceram. Int. 40 (2014) 9541–9547.
[35].            D. Ke, T. Peng, L. Ma, P. Cai, K. Dai, Effects of hydrothermal temperature on the microstructures of BiVO4 and its photocatalytic O2 evolution activity under visible light, Inorg. Chem. 48 (2009) 4685–4691.
[36].            P.W. Voorhees, The theory of Ostwald ripening, J. Stat. Phys. 38 (1985) 231–252.
[37].            A. Martinez-de La Cruz, U.M.G. Perez, Photocatalytic properties of BiVO4 prepared by the co-precipitation method: Degradation of rhodamine B and possible reaction mechanisms under visible irradiation, Mater. Res. Bull. 45 (2010) 135–141.
دوره 5، شماره 4
دی 1397
صفحه 1355-1369
  • تاریخ دریافت: 01 شهریور 1397
  • تاریخ بازنگری: 13 آبان 1397
  • تاریخ پذیرش: 13 آبان 1397
  • تاریخ اولین انتشار: 01 دی 1397
  • تاریخ انتشار: 01 دی 1397