تخمین پارامترهای کیفی آب با استفاده از ترکیب روش‏ ‏ماشین یادگیری قدرتمند و تئوری موجک

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد عمران، دانشگاه صنعتی خاتم‌الأنبیا، بهبهان

2 استادیار گروه عمران، دانشگاه صنعتی خاتم‌الأنبیا، بهبهان

3 دانشیار گروه عمران، دانشگاه صنعتی خاتم‌الأنبیا، بهبهان

چکیده

ﻫریک از ﻣﺼﺎرف ﮔﻮﻧﺎﮔﻮن آب ﻣﺎﻧﻨﺪ ﻛﺸﺎورزی، ﺷﺮب و ﺻﻨﻌﺖ ﻧﻴﺎزﻣﻨﺪ آب ﺑﺎ ‌کیفیتی ﻣﺸﺨﺺ ﻫﺴﺘﻨﺪ ﻛﻪ حدود کیفی آن، ﺑﺎ ﻧﻤﻮﻧﻪ‌ﺑﺮداری‏ﻫﺎی ﻣﻜﺮر، آزﻣﺎﻳﺶ و ﺗﺤﻠﻴﻞ ﻧﺘﺎﻳﺞ ﻣﺸﺨﺺ ﻣﻲ‏شود‏. ﻫﺰینۀ ﻧﻤﻮﻧﻪ‏ﺑﺮداری از آب‏ﻫﺎی ﺳﻄﺤﻲ، اﻧﺪازهﮔﻴﺮی ﭘﺎراﻣﺘﺮﻫﺎی ﻛﻴﻔﻲ در ﻣﺤﻴﻂ آزﻣﺎیشگاه و ﺧﻄﺎﻫﺎی اﻧﺴﺎﻧﻲ، از ﺟﻤﻠﻪ ﻣﺸﻜﻼت ﻣﻮﺟﻮد در ﺗﺨﻤﻴﻦ ﻏﻠﻈﺖ ﭘﺎراﻣﺘﺮﻫﺎی ﻛﻴﻔﻲ‌اند‏. ﺑﻪ ﻫﻤﻴﻦ ﻣﻨﻈﻮر، ﺑﺮای اﻟﮕﻮﺑﻨﺪی ﭘﺎراﻣﺘﺮﻫﺎی ﻛﻴﻔﻲ آب، روش‏ﻫﺎی ﻣﺨﺘﻠﻔﻲ وﺟﻮد دارد ﻛﻪ در اﻳﻦ ﺑﻴﻦ، روش‏ﻫﺎی داده‌ﻣﺒﻨﺎ در دهه‏ﻫﺎی اﺧﻴﺮ ﻣﻮرد ﺗﻮﺟﻪ پژوهشگران ﻗﺮار ﮔﺮﻓﺘﻪ ‏اﺳﺖ. بنابراین، هدف اصلی در تحقیق حاضر، تخمین و مدل‏سازی پارامترهای کیفی آب با استفاده از روش‏های داده‏کاوی نوین، بهبود عملکرد روش‏های داده‏کاوی با کمک تئوری موجک و مقایسۀ آنها با سایر روش‏های داده‏کاوی متداول است. به‏بیانی دیگر، با استفاده از روش‏ داده‏کاوی ماشین یادگیری قدرتمند (ELM) و شبکۀ عصبی پرسپترون چندلایه (MLP‏)، پارامترهای کیفی آب (‏Cl، EC‏، Mg‏ و TDS‏) مدل‌سازی شد. ارزیابی این دو مدل توسط معیارهای آماری ضریب همبستگی (R)‏، ریشۀ میانگین مربع خطا (RMSE)‏ و میانگین قدر مطلق خطا‏ (MAE) و خطای استاندارد نسبی (RSE) برای داده‏های دورۀ آماری 20 ساله‏، انجام شد. با توجه به نتایج، مشخص شد که روش ELM توانسته است به طور متوسط ضریب همبستگی معادل 97/0 را ارائه کند. با وجود آنکه هر دو مدل نتایج قابل قبولی به همراه داشتند، اما در نهایت نتایج نشان داد مدل ELM نسبت به مدل MLP دقت بیشتری برای پیش‏بینی پارامترهای کیفی آب دارد.

کلیدواژه‌ها

موضوعات


]. Soleimani S, Bozorg-Haddad O, Moravej M. Modeling Water Quality Parameters Using Data-driven Methods. Journal of Water and Soil. 2016;30(3):743-57.
[2]. Banejad H, Kamali M, Amirmoradi K, Olyaie E. Forecasting Some of the Qualitative Parameters of Rivers Using Wavelet Artificial Neural Network Hybrid (W-ANN) Model. Iran j Health & Environ. 2012;6(3):277-94.
[3]. Sattari MT, Abbasgoli Naebzad M, Mirabbasi Najafabadi R. Surface water quality prediction using decision tree method. journal of Irrigation & Water Engineering 2014;4(15):76-88.
[4]. Ahmadi MZ, Behzadi S. The process of evaluation of magnesium changes using the neural network and spatial information system in the villages of Gonbad city (Golestan province). Scientific - Research Quarterly of Geographical Data (SEPEHR). 2016;25(99):29-42.
[5]. Asadollahfardi G, Taklify A, Ghanbari A. Application of artificial neural network to predict TDS in Talkheh Rud River. Journal of Irrigation and Drainage Engineering. 2011;138(4):363-70.
[6]. Mahmoudi N, Orouji H, Fallah-Mehdipour E. Integration of shuffled frog leaping algorithm and support vector regression for prediction of water quality parameters. Water resources management. 2016;30(7):2195-211.
[7]. Bozorg-Haddad O, Soleimani S, Loáiciga HA. Modeling Water-Quality Parameters Using Genetic Algorithm–Least Squares Support Vector Regression and Genetic Programming. Journal of Environmental Engineering. 2017;143(7):04017021.
[8]. Alizamir M, Kisi O, Zounemat-Kermani M. Modelling long-term groundwater fluctuations by extreme learning machine using hydro-climatic data. Hydrological Sciences Journal. 2018;63(1):63-73.
[9]. Najafzadeh M, Ghaemi A, Emamgholizadeh S. Prediction of water quality parameters using evolutionary computing-based formulations. International Journal of Environmental Science and Technology. 2018:1-20.
[10]. Heddam S, Kisi O. Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree. Journal of Hydrology. 2018;559:499-509.
[11]. Haykin S. Neural networks: Prentice hall New York; 1994.
 
[12]. Coppola E, Poulton M, Charles E, Dustman J, Szidarovszky F. Application of artificial neural networks to complex groundwater management problems. Natural Resources Research. 2003;12(4):303-20.
[13]. Lee T, Jeng D, Zhang G, Hong J. Neural network modeling for estimation of scour depth around bridge piers. Journal of hydrodynamics. 2007;19(3):378-86.
[14]. Huang G-B, Siew C-K. Extreme learning machine with randomly assigned RBF kernels. International Journal of Information Technology. 2005;11(1):16-24.
[15]. Ding S, Guo L, Hou Y. Extreme learning machine with kernel model based on deep learning. Neural Computing and Applications. 2017;28(8):1975-84.
[16]. Ertuğrul ÖF, Kaya Y. A detailed analysis on extreme learning machine and novel approaches based on ELM. American Journal of computer science and engineering. 2014;1(5):43-50.
[17]. Zhang L, Zhou W, Jiao L. Wavelet support vector machine. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). 2004;34(1):34-9.
[18]. Kisi O, Cimen M. Precipitation forecasting by using wavelet-support vector machine conjunction model. Engineering Applications of Artificial Intelligence. 2012;25(4):783-92.
[19]. Wang W-C, Chau K-W, Cheng C-T, Qiu L. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of hydrology. 2009;374(3-4):294-306.
دوره 6، شماره 2
تیر 1398
صفحه 369-383
  • تاریخ دریافت: 01 آذر 1397
  • تاریخ بازنگری: 23 اسفند 1397
  • تاریخ پذیرش: 23 اسفند 1397
  • تاریخ اولین انتشار: 01 تیر 1398
  • تاریخ انتشار: 01 تیر 1398