مدل‏سازی مقادیر بارش در دورۀ تر سال با استفاده از مدل‏های احتمالاتی گامای تعمیم‌یافته در سواحل شمالی و جنوبی ایران

نوع مقاله : پژوهشی

نویسندگان

1 استادیار، گروه ریاضی و آمار، دانشکدۀ علوم پایه، دانشگاه هرمزگان، بندرعباس

2 استادیار، گروه مهندسی منابع طبیعی، دانشکدۀ کشاورزی و منابع طبیعی، دانشگاه هرمزگان، بندرعباس

چکیده

تحقیق حاضر با استفاده از مدل‏های خانوادۀ گامای تعمیم‌یافته امکان برآورد بارش را برای مناطق پربارش و کم‏بارش ایران طی دورۀ ترِ سال در ایستگاه‏های سینوپتیک سواحل دریای خزر در شمال کشور و سواحل جنوبی در خلیج فارس و دریای عمان طی دورۀ آماری 1986-2016 فراهم می‏سازد تا مدلی کاربردی را برای تفسیر و مدل‏سازی شرایط ترسالی در آینده پیشنهاد ‌کند. مدل‏های استفاده‌شده در تحقیق حاضر شامل گامای تعمیم‌یافته (گامای سه‌متغیره)، گاما، وایبل و لوگ نرمال می‌شوند. برای انتخاب مدل، از معیار AIC و BIC و به منظور نکویی برازش، از آزمون K-S در محیط نرم‌افزاری R استفاده شده و پارامترهای توابع توزیع در هر ایستگاه برآورد شد. با توجه به مناسب‏ترین تابع توزیع در هر ایستگاه، بزرگی بارش ماهانه طی دورۀ تر سال در دورۀ بازگشت‏های 2 تا 100 سال در سواحل جنوبی و شمالی محاسبه شد. نتایج نشان داد تمامی ایستگاه‏ها در سواحل دریای عمان با تابع توزیع وایبل (WEI)، در مناطق مرکزی خلیج فارس با تابع توزیع گاما (GA) و در مناطق پربارش سواحل شمالی و غرب خلیج فارس با تابع توزیع گامای تعمیم‌یافته (GG) بهترین برازش را داشته‏اند. در سواحل عمان، تابع توزیع وایبل با مقدار پارامتر شکل و مقیاس کمتر از 11 و 5/0، در بخش مرکزی خلیج فارس تابع توزیع گاما با پارامتر شکل بین 20 تا 30 و پارامتر مقیاس بیش از 5/1 و در بخش غربی خلیج فارس و در سواحل شمالی کشور، تابع توزیع گامای تعمیم‌یافته با محدودۀ پارامتر شکل 31 تا 170 و محدودۀ پارامتر مقیاس 5/0 تا 5/1 ‌بهترین برازش بر مقدار بارش در دورۀ ترِ سال را دار‌ند. تکنیک‏ها و نتایج ارائه‌شده در تحقیق حاضر، به‏عنوان مرجعی برای انتخاب تابع توزیع مناسب بر مقادیر بارش در دورۀ تر در سواحل شمالی و جنوبی ایران فراهم می‏آورد تا بتوان در آینده از آن به عنوان ابزاری برای پیش‏بینی و تصمیم‏گیری در مدیریت منابع آب در بخش کشاورزی بهره برد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling Wet Period Rainfall magnitude in the North and South Coasts of Iran Using the Generalized Gamma Model

نویسندگان [English]

  • Hossein Zamani 1
  • Ommolbanin bazrafshan 2
1 University of Hormozgan
2 Hormozgan
چکیده [English]

This research uses the generalized gamma family models to estimate the precipitation in the high and low rainfall regions of Iran during the wet seasons in the southern and northern coast during 1986-2016. Hence it provides an applied model for interpretation and forecasting of wet conditions in future. Through this study, we have used the generalized gamma (3 parameters gamma), gamma, Weibull and the log normal models. To select the best fitted model we used some criteria such as the AIC and the BICand the k-s test has been applied for the goodness of fit test in R software. Finally the best fitted models have been used for computing the maximum event in return periods from 2 to 100 years of the southern and northern coast. The results also showed that the Weibull distribution had the best performance of the stations of the Oman sea coastal while the gamma model had the better fitting at the stations in the middle part of the Persian gulf coast. In addition, the generalized gamma model had the best fitting in the high rainfall stations in the north of the country and the stations in the west part of Persian Gulf coastal. The outputs and techniques which used through this research can be used basically for selecting the suitable distribution functions for fitting on the precipitation data during the wet seasons in the southern and northern coast of Iran.

کلیدواژه‌ها [English]

  • Wet Period
  • Probability distribution function
  • Low and High Rainfall areas
  • North and South coast of Iran
 
منابع
 
[1]. Dinpashoh Y, Jhajharia D, Fakheri-Fard A, Singh V. P, & Kahya E. Trends in reference crop evapotranspiration over Iran. J Hydrol. 2011; 399(3-4): 422-433.
[2]. Kousari M R, Dastorani M T, Niazi Y, Soheili E, Hayatzadeh M, & Chezgi J. Trend detection of drought in arid and semi-arid regions of Iran based on implementation of reconnaissance drought index (RDI) and application of non-parametrical statistical method. Wat Resour Manage. 2014; 28(7): 1857-1872.
[3]. NDWMC. National Drought Warning Monitoring Center. http://ndc.irimo.ir/far/index.php
[4]. Bazrafshan O, Gerkani Nezhad Moshizi Z.The Impacts of Climate Variability on Spatiotemporal Water Footprint of Tomato Production in Hormozgan. J Wat Soil. 2018; 32(1): 29-43.
[5]. Husak G J, Michaelsen J, & Funk C. Use of the gamma distribution to represent monthly rainfall in Africa for drought monitoring applications. International Journal of Climatology, 2007; 27(7): 935-944.
[6]. Katz R W. Extreme value theory for precipitation: Sensitivity analysis for climate change. Advanc Wat Resour. 1999; 23(2): 133-139.
[7]. Semenov V, & Bengtsson L. Secular trends in daily precipitation characteristics: Greenhouse gas simulation with a coupled AOGCM. Clim Dynam. 2002;19(2): 123-140.
[8]. Stacy E W. A generalization of the gamma distribution. Annals Math Stat. 1962; 33:1187-1192.
[9]. Vergni L, Di Lena B, Todisco F. & Mannocchi F.. Uncertainty in drought monitoring by the Standardized Precipitation Index: the case study of the Abruzzo region (central Italy). Theor.Appl. Climatol. 2015; 1685-6.
[10].            Vergni L, Todisco F, & Mannocchi F. Evaluating the uncertainty and reliability of standardized indices. Hydrol Res. 2016; 60-76.
[11].            Alijani B, Afsharmanesh H. Long term Analysis of Precipitation Using using Probability Distribution Function (Case Study: Iran), Geoghraph Urban Plan Zagros Land Scape. 2016; 7(25): 79-95.
[12].            Esmaeili A, MAhmudi S, Raof M, Mirzaei S. Estimation of Maximum Rainfall using Probability Distribution Function (Case Study: Namin Watershed), 1st Agriculture Science and Environment of Iran, Ardebil. 2016.
[13].  Mahmoudzadeh F. Uncertainties in assessing meteorological drought using SPI and SPEI drought index in arid and semi-arid Iran. MSc Thesis, University of Hormozgan, 2016.
[14].            Castellvi F, Mormeneo I, Perez P J. Generation of daily amounts of precipitation from standard climatic data: a case study for Argentina. J Hydrol. 2004; 289: 286–302.
[15].            Shoji T, & Kitaura H. Statistical and geostatistical analysis of rainfall in central Japan. Comput Geosci, 2006; 32(8): 1007-1024.
[16].            Pal S, & Mazumdar, D. Stochastic Modelling of Monthly Rainfall Volume During Monsoon Season over Gangetic West Bengal, India. Nat Environ Pollut Technol, 2015; 14(4): 951.
[17].            Ghosh, S., Roy, M. K., & Biswas, S. C. (2016). Determination of the best fit probability distribution for monthly rainfall data in Bangladesh. American Journal of Mathematics and Statistics, 6(4), 170-174.
[18].            Abbas N, Siti Mulisha S M, & Abdul Halim S. Probability distributions comparative analysis in assessing rainfall process in time and space. International J Civil Eng Technol. 2017; 8(10): 1679-1688.
[19].            Alam, M. A., Emura, K., Farnham, C., & Yuan, J. (2018). Best-Fit Probability Distributions and Return Periods for Maximum Monthly Rainfall in Bangladesh. Climate, 6(1), 9.
[20].            Sadeghi Mazidi H, Bazrafshan O, Bahremand A, Malekian A. Correction annual maximum discharge based on appropriate probability distribution function in south of Iran. Iranian J Ecohydro, 2017; 4(4): 1175-1185.
[21].            Vogel R M & Wilson I. Probability distribution of annual maximum, mean, and minimum streamflows in the United States. J hydrol Eng. 1996; 1(2): 69-76.
[22].             Susanti W, Adnan A, Yendra R, Muhaijir, M N. The Analysis of Extreme Rainfall Events in Pekanbaru City Using Three-Parameter Generalized Extreme Value and Generalized Pareto Distribution. Appl Math Sci. 2018; 12(2): 69-80.
[23].            Hurst, H. 1951. The long-term storage capacity of reservoirs Transactions of American Society Civil Engineer." 116-195.
[24].            Helsel D R, Hirsch R M. Statistical methods in water resources Vol. 1992; 49, Elsevier, 340P.
[25].            Akaike H. Information theory and an eztension oof the maximum likefood principle. In Second International Symposium on Information Theory, 1973 (pp. 267-281). Akademiai Kiado. 1973
[26].            Schwarz G. Estimating the dimension of a model. The annals of statistics, 1978; 6(2): 461-464.
[27].            Musy A, Meylan P, & Favre AC. Predictive hydrology: A frequency analysis approach. CRC Press. 2012.
[28].            Chandler RE, & Wheater HS. Analysis of rainfall variability using generalized linear models: a case study from the west of Ireland. Wat Resour Res, 2002; 38(10): 10-1.