[1]. Karamouz M, Ahmadi A, Nazif S. Challenges and opportunities for using optimal utilization models of water resources systems, 1st Conference on Optimum Utilization of Water Resources, 2006.[persian].
[2]. Weise T. Global optimization algorithms-theory and application. Self-Published Thomas Weise. 2009 Jun 26.
[3]. Sharma S, Sharma TK, Pant M, Rajpurohit J, Naruka B. Centroid mutation embedded shuffled frog-leaping algorithm. Procedia Computer Science. 2015;46:127-134.
[4]. Eusuff MM, Lansey KE. Optimization of water distribution network design using the shuffled frog leaping algorithm. Journal of Water Resources planning and management. 2003;129(3):210-225.
[5]. Elbeltagi E, Hegazy T, Grierson D. Comparison among five evolutionary-based optimization algorithms. Advanced engineering informatics. 2005;19(1):43-53.
[6]. Eusuff M, Lansey K, Pasha F. Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Engineering optimization. 2006;38(2):129-154.
[7]. Luo XH, Yang Y, Li X. Solving TSP with shuffled frog-leaping algorithm. In2008 Eighth InternationalConference on Intelligent Systems Design and Applications 2008; 3: 228-232. IEEE.
[8]. Chung G, Lansey K. Application of the shuffled frog leaping algorithm for the optimization of a general large-scale water supply system. Water resources management. 2009;23(4):797-823.
[9]. Amiri B, Fathian M, Maroosi A. Application of shuffled frog-leaping algorithm on clustering. The International Journal of Advanced Manufacturing Technology. 2009;45(1-2):199-209.
[10]. Vafaeinejad A. Cropping Pattern Optimization by Using of TOPSIS and Genetic Algorithm Based on the Capabilities of GIS, Iranian Journal of Ecohydrology, 2016; 3(1): 69 – 82.[persian].
[11]. Vafaeinejad A, Yousefzadeh J, Yousefi H, Mohamadi Varzaneh N. Using GIS and linear programming to manage water distribution in irrigation networks and cropping pattern allocation (Case study: Downstream lands of Aq-chay Dam), Iranian Journal of Ecohydrology, 2014; 1(2): 123 – 132.[persian].
[12]. Mohamadi Varzaneh N, Vafaeinejad A. Water Allocation in Irrigation Networks by using of Decision Support System Based on the Geospatial Information System (GIS) and Particle Swarm Optimization (PSO), Iranian Journal of Ecohydrology, 2015; 2(1): 39 – 49.[persian].
[13]. Luo J, Chen MR. Improved shuffled frog leaping algorithm and its multi-phase model for multi-depot vehicle routing problem. Expert Systems with Applications. 2014;41(5):2535-2545.
[14]. Kennedy J, Eberhart R. Particle swarm optimization (PSO). InProc. IEEE International Conference on Neural Networks, Perth, Australia 1995;1942-1948.
[15]. Liping Z, Weiwei W, Yi H, Yefeng X, Yixian C. Application of shuffled frog leaping algorithm to an uncapacitated SLLS problem. AASRI Procedia. 2012;1:226-231.
[16]. Jaafari A, Zenner EK, Panahi M, Shahabi H. Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agricultural and forest meteorology. 2019;266:198-207.
[17]. Yamani M, Moghimi E, Jodari-E-Eyvazi J, Mohamadi H, Issaee A. Effects of Ecogeomorphological Parameters on Chemical Water Quality Case Study: Kor River and Doroodzan Dam Lake. Geography and Environmental Planning, 2010; 21(1): 17 –32.[persian].
[18]. Hosseini Moghari S, Banihabib M. Optimizing operation of reservoir for agricultural water supply using firefly algorithm. Journal of Soil and Water Resources Conservation, 2014; 3(4): 17-31. [persian].