تحلیل شدت، مدت و بزرگی خشکسالی هیدرولوژیکی با استفاده از توابع کاپولا (مطالعۀ موردی: حوضۀ آبخیز کل مهران و بندر سدیج)

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکترای علوم و مهندسی آبخیزداری، گروه مهندسی منابع طبیعی ،دانشکدۀ کشاورزی و منابع طبیعی، دانشگاه هرمزگان

2 دانشیار گروه مهندسی منابع طبیعی و مدیر هستۀ پژوهشی تجزیه‌وتحلیل داده در علوم محیطی، گروه مهندسی منابع طبیعی، دانشکدۀ کشاورزی و منابع طبیعی، دانشگاه هرمزگان

3 استادیار گروه آمار و ریاضی و عضو هستۀ پژوهشی تجزیه‌و‌تحلیل داده در علوم محیطی، گروه ریاضیات و آمار، دانشکدۀ علوم پایه، دانشگاه هرمزگان

چکیده

همبستگی میان مشخصه‏های خشکسالی زیاد است. تحلیل‏های تک‌متغیرۀ خشکسالی قادر به وارد کردن تأثیرات این همبستگی در محاسبات نیستند. بنابراین، بهترین روش برای پایش خشکسالی، تحلیل هم‌زمان مشخصه‏های آن است. هدف از ‌تحقیق حاضر، بررسی خشکسالی هیدرولوژیکی در حوضۀ آبخیز کل مهران و بندر سدیج است. به این منظور، از توابع کاپولای تجربی برای محاسبۀ تابع توزیع تجمعی رواناب و محاسبۀ شاخص کمبود هم‌زمان (JDI) استفاده شد. بعد از محاسبۀ JDI، سه مشخصۀ شدت، مدت و بزرگی خشکسالی استخراج شده و کاپولاهای تئوری خانوادۀ ارشمیدسی و بیضوی بر آنها برازش داده شد. سپس، کوپل سه‌متغیرۀ مشخصه‏های خشکسالی صورت پذیرفت. نتایج بررسی JDI و SRI-12 در منطقۀ مطالعه‌شده نشان داد شاخص کمبود هم‌زمان، برای پایش خشکسالی هیدرولوژیکی مناسب است و تخمین دقیق‏تری نسبت به SRI-12 از خشکسالی می‏دهد. نتایج نشان داد دورۀ بازگشت سه‌متغیرۀ هم‌زمان مقادیر بزرگ‌تری را نسبت به دورۀ بازگشت سه‌متغیرۀ شرطی نشان می‏دهد. بنابراین، احتمال هم‌زمان یا شرطی با مقادیر زیاد و یا کم دورۀ بازگشت، برای پیش‌آگاهی از وقایع خشکسالی بسیار بااهمیت است، چرا که با کم‏برآورد یا بیش‌برآورد خطر خشکسالی، در بررسی تأثیر منفی خشکسالی بر منابع طبیعی، رطوبت خاک و کیفیت آب، بسیار کارا هستند. در مجموع، کاپولاهای چندبعدی می‏توانند روشی مطمئن برای حل رابطۀ پیچیده و غیرخطی بین مشخصه‏های خشکسالی و ارائۀ یک شاخص جامع خشکسالی فراهم کنند.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of Hydrological Drought Severity, Duration and Magnitude Using Copula Functions (Case study: Bandar-Sedij and Kol-Mehran Watershed)

نویسندگان [English]

  • Zahra Azhdati 1
  • Ommolbanin Bazrafshan 2
  • Marzieh Shekari 3
  • Hossein Zamani 3
1 Ph.D candidate, Department of Natural Resources, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar-Abbas, Iran
2 Associate Professor, Department of Natural Resources and Head of EDA Research Center, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar-Abbas, Iran
3 Assistant Professor, Department of Mathematics and Statistics and EDA Research Center, Faculty of Science, University of Hormozgan, Bandar-Abbas, Iran
چکیده [English]

The drought characteristics are often highly correlated. But, the univariate drought analysis is not a proper approach since it doesn’t involve the dependence structure of drought characteristics. Therefore, the multivariate drought analysis is used since it considers the dependence structure of drought characteristics in the model. The aim of this study is to analyze multivariate hydrological drought in the Mehran and Sedij basins. For this reason, the empirical copula was used to compute the cumulative distribution function of the run-off and the joint deficit index. Then, the drought severity, duration and magnitude were extracted and several theoretical copulas belongs to the Archimedean and Eliptical families were fitted to obtain the trivariate distribution of drought variables. Results of the JDI and SPI-12 evaluation in the study area represented that the JDI is a proper index of monitoring hydrological drought and provides a more precise estimation than the SPI-12. Further, results of joint return period indicated that the joint trivariate return period is larger than the conditional trivariate return period. So that, the joint or conditional probability with high or low return periods is important in predicting drought events. Because the under-estimation or over-estimation of drought risk have serious impact on environmental resources, soil moisture and water quality. Generally, the multi-dimensional copulas are useful approaches in evaluating the complicated and non-linear relationship of variables and constructing a comprehensive index for evaluating drought condition.

کلیدواژه‌ها [English]

  • Hydrological drought
  • Copula function
  • drought characteristics
  • joint deficit index
[1]. Zamani H, bazrafshan O. Modeling Wet Period Rainfall magnitude in the North and South Coasts of Iran Using the Generalized Gamma Model. Iranian journal of Ecohydrology. 2019; 6(3): 739-751.[Persian]
[2]. Gerkani Nezhad Moshizi Z, Teimouri F, Bazrafshan O. Optimization of the number of rain gage stations based on interpolation methods and principal components analysis in Iran. Iranian journal of Ecohydrology, 2017; 4(3): 897-910. [Persian]
[3]. Heim Jr RR. A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society. 2002;83(8):1149-66.
[4]. Tosunoğlu F, Onof C. Joint modelling of drought characteristics derived from historical and synthetic rainfalls: Application of Generalized Linear Models and Copulas. Journal of Hydrology: Regional Studies. 2017; 14:167-81.
[5]. Nalbantis I, Tsakiris G. Assessment of hydrological drought revisited. Water Resources Management. 2009; 23(5):881-97.
[6]. Wilhite DA, editor. Droughts: A global assesment. Natural Hazards and Disasters Series, U.K: Routledge Publishers; 2016.
[7]. Sklar A. Distribution functions of n dimensions and margins. Publications of the Institute of Statistics of the University of Paris. 1959; 8:229-31.
[8]. De Michele C, Salvadori G. A generalized Pareto intensity‐duration model of storm rainfall exploiting 2‐copulas. Journal of Geophysical Research: Atmospheres. 2003 Jan 27;108(D2).
[9]. Shiau JT. Fitting drought duration and severity with two-dimensional copulas. Water resources management. 2006; 20(5):795-815.
[10].            Serinaldi F, Bonaccorso B, Cancelliere A, Grimaldi S. Probabilistic characterization of drought properties through copulas. Physics and Chemistry of the Earth, Parts a/B/C. 2009 Jan 1;34(10-12):596-605.
[11].            Song S, Singh VP. Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stochastic Environmental Research and Risk Assessment. 2010; 24(5):783-805.
[12].            Liu, Chun-Ling, Qiang Zhang, Vijay P. Singh, and Ying Cui. "Copula-based evaluations of drought variations in Guangdong, South China." Natural Hazards. 2011: 1533-1546.
[13].            Zhang Q, Li J, Singh VP, Xu CY. Copula‐based spatio‐temporal patterns of precipitation extremes in China. international Journal of Climatology. 2013; 33(5):1140-52.
[14].            Mirabbasi R, Anagnostou EN, Fakheri-Fard A, Dinpashoh Y, Eslamian S. Analysis of meteorological drought in northwest Iran using the Joint Deficit Index. Journal of Hydrology. 2013 Jun 7;492:35-48.
[15].            Bazrafshan O, Zamani H, Shekari M. A copula‐based index for drought analysis in arid and semi‐arid regions of Iran. Natural Resource Modeling. 2020; 33(1):e12237.
[16].            Shukla S, Wood AW. Use of a standardized runoff index for characterizing hydrologic drought. Geophysical research letters. 2008;35(2).
[17].            Kao SC, Govindaraju RS. A copula-based joint deficit index for droughts. Journal of Hydrology. 2010; 380(1-2):121-34.
[18].            Requena AI, Mediero L, Garrote L. A bivariate return period based on copulas for hydrologic dam design: accounting for reservoir routing in risk estimation. Hydrology and Earth System Sciences. 2013; 17(8):3023.
[19].            Hofert M, Mächler M. Nested Archimedean copulas meet R: The nacopula package. Journal of Statistical Software. 2011; 39(9).
[20].            Cheraghali Zadeh M, Nazi Ghomeshloo A, and Bazrafshan J. Integrated monitoring of Hydro-meteorological droughts in Kasilian catchment (Mazandaran province). Earth and Space Physics. 2018;44 (2), 463-477.(in Persion).
[21].            Kao SC, Govindaraju RS. Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water Resources Research. 2008; 44(2).
[22].            Hui-Mean F, Yusof F, Yusop Z, Suhaila J. Trivariate copula in drought analysis: a case study in peninsular Malaysia. Theoretical and Applied Climatology. 2019; 138(1-2):657-71.
[23].            Ganguli P, Reddy MJ. Probabilistic assessment of flood risks using trivariate copulas. Theoretical and Applied Climatology. 2013;111(1-2):341-60.