تعیین روش بهره‌برداری بهینه از مخزن با مدل غیر خطی برای کاهش تلفات آب مخزن

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد سازه‌های آبی، گروه مهندسی آبیاری و زهکشی، پردیس ابوریحان، دانشگاه تهران‌

2 استاد گروه مهندسی آبیاری و زهکشی، پردیس ابوریحان، دانشگاه تهران‌

3 استادیار گروه مهندسی آبیاری و زهکشی، پردیس ابوریحان، دانشگاه تهران‌

چکیده

هدف از پژوهش حاضر، ارزیابی تلفات تبخیر و تراوش در روش‏های مختلف بهره‏برداری از مخازن سدهاست. در تحقیق حاضر برای ارزیابی شاخص‏های تلفات آب و کمبود و شاخص‏های کارایی مخزن طی سال‌های 1390-1397، ابتدا روش بهره‏برداری گرادیان کاهشی تعمیم‏یافته تدوین شد. سپس، این شاخص‏ها به ازای روش‏های گرادیان کاهشی تعمیم‏یافته، بهره‏برداری فعلی و منحنی فرمان پیشنهادی برآورد شده و با هم مقایسه ‌شدند. برای برآورد دقیق تراوش، از واسنجی مدل‌سازی عددی Seep/w با استفاده از پیزومترهای موجود استفاده شد. نتایج به‌دست‌آمده نشان داد روش بهره‏برداری گرادیان کاهشی تعمیم‏یافته (GRG) نسبت به روش بهره‏برداری استاندارد از نظر شاخص‏های تراوش، تبخیر و کمبود سالانه به‌ترتیب به میزان 86/67، 24/54 و 68/67 درصد بهبود یافته است. از نظر شاخص‏های اعتمادپذیری، برگشت‏پذیری، آسیب‏پذیری و انعطاف‏پذیری به‌ترتیب به میزان 95/368، 26/110، 68/67 و 40/4750 درصد بهبود یافته است. همچنین، این روش نسبت به روش بهره‏برداری فعلی از نظر شاخص‏های تبخیر و کمبود سالانه به‌ترتیب به میزان 88/15 و 86/41 درصد بهبود یافت. از نظر شاخص‏های اعتمادپذیری، برگشت‏پذیری، آسیب‏پذیری و انعطاف‏پذیری به‌ترتیب به میزان 54/25، 34/30، 86/41 و 15/125 درصد بهبود یافته و شاخص تراوش این روش نسبت به روش بهره‏برداری فعلی 65/18 درصد افزایش داشته است. بنابراین، روش بهره‏برداری بهینۀ گرادیان کاهشی تعمیم‏یافته نسبت به دو روش‏ بهره‏برداری منحنی فرمان و فعلی به صورت مطلوبی در بهبود شاخص‏های کمبود، تلفات تبخیر و انعطاف‏پذیری مخزن سد مؤثر بوده و پیشنهاد می‏شود برای کاهش تلفات تبخیر و کمبود تأمین و بهبود کارایی مخزن، از این روش در سایر مخازن استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of Optimal Operation Policy of Reservoir with Nonlinear Model to Reduce Reservoir Water Losses

نویسندگان [English]

  • Sakine Hatami 1
  • Mohammad Ebrahim Banihabib 2
  • Jaber Soltani 3
1 M.Sc. Student, Department of Irrigation and Drainage Engineering, Aburaihan Campus, University of Tehran, Tehran, Iran
2 Professor, Department of Irrigation and Drainage Engineering, Aburaihan Campus, University of Tehran, Tehran, Iran
3 Assistant Professor, Department of Irrigation and Drainage Engineering, Aburaihan Campus, University of Tehran, Tehran, Iran
چکیده [English]

The purpose of this study is to evaluate the evaporation and seepage losses in different dams' reservoirs operation policies. In the present study, in order to assess water losses, water supply deficiency and reservoir efficiency indices from 2012 to 2018 were analyzed. First, the operation policy of the Generalized Reduction Gradient (GRG) was formulated, then the mentioned indices for the generalized reduction gradient, the current operation and the proposed rule curve were estimated and compared. The Seep/w numerical model calibrated using vibrating wire piezometers to accurately estimate the seepage value. The results showed that the GRG improved the annual seepage, evaporation and deficiency indices by 67.86%, 54.24% and 67.68%, respectively. Moreover, the improvement of the reliability, reversibility, vulnerability and flexibility indices were 368.95%, 110.26%, 67.68% and 4750.40%, respectively. This policy also improved the annual evaporation deficiency indices by 15.88% and 41.86% respectively, compared to the current operation policy. The improvement of this policy in terms of reliability, reversibility, vulnerability and flexibility indices obtained 25.54%, 30.34%, 41.86% and 125.15%, respectively. Interestingly, this policy had an 18.65% growth in comparison to the current operation policy. Therefore, the GRG optimization policy is optimally effective in improving deficiency, evaporation losses, and reservoir's flexibility indices. This approach is recommended to be used for the assessment of reduction in evaporation and seepage losses and deficiency of water supply and also for the enhancement of reservoir performance for other reservoirs.

کلیدواژه‌ها [English]

  • Evaporation
  • Seepage
  • Pishin Dam
  • Generalized Reduced gradient operation policy
  • Rule curve
[1]. Loucks DP, Van Beek A. Water resources systems planning and management: an introduction to methods, models and applications. United Nations Educational. Scientific and Cultural Organization (UNESCO). 2005.
[2]. Teegavarapu RSV, Simonovic SP. Optimal operation of reservoir systems using simulated annealing. Water Resources Management. 2002; 16(5): 401- 428.
[3]. Sivapragasam C, Vasudevan G, Maran J, Bose C, Kaza S, Ganesh N. Modeling evaporation-seepage losses for reservoir water balance in semi-arid regions. Water resources management. 2009; 23(5), 853.
[4]. Banihabib ME, Zahraei A, Eslamian S. An integrated optimisation model of reservoir and irrigation system applying uniform deficit irrigation. International Journal of Hydrology Science and Technology. 2015; 5(4): 372-385.
[5]. Hosseini-Moghari SM, Banihabib ME. Optimization of reservoir operation for agricultural water supply using firefly algorithm.3 water and soil preservation. 2014; 3(4)17-31. [Persian]
[6]. Banihabib ME, Hasani K, Bavani ARM, Asgari K. A framework for the assessment of reservoir operation adaptation to climate change in an arid region. International Journal of Global Warming. 2016; 9(3): 286-305.
[7]. Banihabib ME, Zahraei A, Eslamian S. Dynamic Programming Model for the System of a Non‐Uniform Deficit Irrigation and a Reservoir. Irrigation and drainage. 2017; 66(1):71-81.
[8]. Beheshti AA, Hojati A. Optimization of Reservoir Operation of Qardanloo Dam Using Linear Programming. First National Conference on sustainable development of agricultural. natural resources and environment. 2014. [Persian]
[9]. Torabi H, Dehghani R, Godarzi A. Optimal operation of Reservoir using of linear programming model (Case study: Dorudzan dam). Human and environment. 2019; 17(1):27-37. [Persian]
[10]. Nozari H, Moggan M. Operation Management of Amirkabir Dam Reservoir Water Management Using System Dynamics and Nonlinear Programming Model. Iranian Soil and Water Research. 2017; 48(2):335-347. [Persian]
[11]. Lasdon LS, Warren AD. Generalized reduced gradient software for linearly and nonlinearly constrained problems. In: Greenberg HJ (ed) Design and implementation of optimization software. Sijthoff and Noordhoff. The Netherlands. 1987; 363–397.
 [12]. Lasdon LS, Warren AD, Jain A, Ratner M. Design and testing of a generalized reduced gradient code for nonlinear programming. ACM Trans Math Softw.1978; 4:34–50.
[13]. Elci A. Calibration of groundwater vulnerability mapping using the generalized reduced gradient method. Journal of contaminant hydrology. 2017; 207, 39-49.
[14]. Pishin Dam Technical Reports, engineering Advisory company Pars Consulate. (1384-1387). [Persian]
[15]. Dunnicliff, J. Geotechnical Instrumentation for Monitoring Field Performance. Wiley, New York; 1988. 577 pp.
[16]. Varyani A, Fatahi P. Determination of the optimal amount of production in a two-level production system with potential demand. International Journal of Industrial Engineering and Production Management. 2014; 24(1):56-66. [Persian]
[17]. Lasdon LS, Fox RL, Ratner MW. Nonlinear optimization using the generalized reduced gradient method. Revue française dautomatique, informatique, recherche operationnelle. Recherche operationnelle. 1974; 8(3):73-103.
[18]. Hashimoto T, Stediger JR, Loucks DP. Reliability, resiliency and vulnerability criteria for water resource system performance evaluation. Water Resources Research. 1982; 18(1):14-20.