کاربرد اطلاعات پایگاه‏ های داده‏ های هواشناسی مختلف در برآورد عملکرد و نیاز آبی گندم (مطالعۀ موردی: دشت قزوین)

نوع مقاله : پژوهشی

نویسندگان

1 دانش‌آموختۀ کارشناسی ارشد گروه علوم و مهندسی آب، دانشگاه بین‌المللی امام خمینی(ره)، قزوین

2 دانشیار گروه علوم مهندسی آب، دانشگاه بین‌المللی امام خمینی(ره)، قزوین

3 استادیار گروه علوم مهندسی آب، دانشگاه بین‌المللی امام خمینی(ره)، قزوین

4 پژوهشگر مرکز علوم گیاهی، دانشگاه کوئینزلند، استرالیا

چکیده

دمای هوا و بارندگی، کمیت و کیفیت تولیدات محصولات کشاورزی را تحت تأثیر قرار می‏دهد، بنابراین برآورد و بررسی تغییرات مکانی-زمانی آن اهمیت دارد. در بسیاری از مناطق کشور به دلیل تراکم کم ایستگاه‏های اندازه‏گیری و یا دورۀ آماری کوتاه ایستگاه‏های جدید، اطلاعات زمانی و مکانی محدودی در دسترس است. پژوهش حاضر با هدف امکان‌سنجی استفاده از داده‏های پایگاه‏ها هواشناسی شبکه‏بندی‌شدة CRU، AgMERRA، AgCFSR و  GPCC-CRUدر برآورد عملکرد و نیاز آبی گیاه گندم و مقایسۀ آن با مقادیر برآوردشده با اطلاعات ایستگاه سینوپتیک قزوین است.به این منظور، اطلاعات اقلیمی ماهانۀ ایستگاه سینوپتیک قزوین از سال 1980 تا 2010 و اطلاعات اقلیمی پایگاه‏های یادشده به سه روش استفاده از نزدیک‏ترین نقطه به ایستگاه سینوپتیک (K1)، استفاده از میانگین چهار نقطۀ نزدیک ایستگاه سینوپتیک (K4) و استفاده از میانگین هشت نقطۀ نزدیک ایستگاه سینوپتیک (K8) استخراج شد. کیفیت داده‏های این پایگاه‏ها با استفاده از چهار شاخص آماری (  RMSE،NRMSE، ME) به صورت غیر مستقیم (با استفاده از خروجی‏های مدل گیاهی AquaCrop) ارزیابی شد. در برآورد نیاز ‏آبی گیاه گندم، پایگاه اطلاعاتی GPCC-CR با چهار (K4) و یک (K1) نقطه همسایگی بهترین عملکرد را در قیاس با سایر گزینه‏ها داشت. برآورد عملکرد گندم با استفاده از داده‏های AgMERRA در دو حالت K1 و K4 بیشترین میزان همبستگی با داده‏های ایستگاه سینوپتیک را نشان داد. نتایج نشان می‏دهدبرای برآورد عملکرد محصولات زراعی می‏توان از اطلاعات پایگاه‏های اطلاعاتی هواشناسی شبکه‏بندی‌شده با دقت مناسب استفاده کرد. اما در خصوص برآورد نیاز آبی فقط پایگاه اطلاعاتی  GPCC-CRUدقت قابل قبولی داشته است.

کلیدواژه‌ها


عنوان مقاله [English]

Use of Gridded Weather Datasets in Simulation of Wheat Yield and Water Requirement (Case Study: Iran’s Qazvin Plain)

نویسندگان [English]

  • Rezvan Bahroloum 1
  • Hadi Ramezani Etedali 2
  • Asghar Azizian 3
  • Behnam Ababaei 4
1 M.Sc. Student, Department of Water Sciences and Engineering, Imam Khomeini International University, Qazvin, Iran
2 Associate Professor, Department of Water Sciences and Engineering, Imam Khomeini International University, Qazvin, Iran
3 Assistant Professor, Department of Water Sciences and Engineering, Imam Khomeini International University, Qazvin, Iran
4 Centre for Crop Science, The Queensland Alliance for Agriculture and Food Innovation (QAAFI), University of Queensland, Australia
چکیده [English]

Temperature and rainfall affect the quantity and quality of agricultural products. Therefore, it is important to estimate its spatial-temporal changes. In many region of the country, due to the low density of meteorological stations or the small statistical period of new stations, limited time and space information is available. Therefore, this study aims to use the data of CRU, AgMERRA, AgCFSR and GPCC gridded weather datasets in estimation of yield and water requirement of wheat and compare them with the estimated values ​​with the information of Qazvin Synoptic Station. For this purpose, monthly weather time series of Qazvin synoptic station were extracted from 1980 to 2010 along with the data from the selected gridded datasets extracted from the closest grid cell to the synoptic station (K1), the average of four closest grid cells to the synoptic station (K4), and the average of eight closest grid cells to the synoptic station (K8). The quality of the gridded datasets was assessed with four statistical indices (R2, RMSE, NRMSE, ME) in a direct and indirect way (the latter using the outputs of the AquaCrop model). In estimating wheat water requirement, GPCC database with four points (K4) and one point (K1) showed the best performance. Wheat yield simulated with AgMERRA data with one (K1) and four (K4) closest grid cells had the highest correlation with the simulated values with data from the synoptic station. Results showed that all selected gridded datasets can be used to simulate grain yield with satisfactory performance, but only data from GPCC-CUR dataset would result in reliable estimation of wheat water requirement.

کلیدواژه‌ها [English]

  • AquaCrop
  • Qazvin Plain
  • CRU
  • AgMERRA
  • AgCFSR
  • GPCC
[1].  Faraji Z, Kaviani A, Shakiba AR. Evaluation of evapotranspiration, precipitation and air temperature data from the GLDAS model using observational data in Qazvin province. Journal of Water and Soil Conservation Research. 2017 Jul 23; 24 (3): 283-97.
[2].  Hosseini Moghari, M., Araghi Nejad, SH., and Ebrahimi, K. A study of the accuracy of global networked rainfall information in the Urmia Lake basin. Iranian Water and Soil. 2017 3: 73-88
[3].  Worqlul AW, Collick AS, Tilahun SA, Langan S, Rientjes TH, Steenhuis TS. Comparing TRMM 3B42, CFSR and ground-based rainfall estimates as input for hydrological models, in data scarce regions: the Upper Blue Nile Basin, Ethiopia. Hydrology and earth system sciences discussions. 2015 Feb 18;12(2):2081-112.
[4].  Greene JS, Morrissey ML.Validation and Uncertainty Analysis of Satellite Rainfall Algorithms. The Professional Geographer. 2000 May; 52(2):247-58.
[5].  Zizian, A; Ramezani Etedali, H. Evaluation of Era-Interim Analytical Open Data Accuracy in Daily and Monthly Rainfall Estimation.. Iranian Water Resources Research. 2019 Sep 50(4):777-791
[6].  Azizian, A. Ramezani Etedali, H. Monitoring the time and location of ECMWF review data and precipitation services using Parsian and TRMM remote sensing techniques. Economic Research on Iranian Water. 2019 1: 163-177.
[7].  Ramezani Etedali H, Ababaei B, Kaviani A. Investigation of long-term changes in air temperature in the country using CRU TS database data. Journal of Water Resources Conservation. 2018. 8(1)
[8].  Ababaei, B. and Ramezani Etedali, H. Investigating climate change over 1957–2016 in an arid environment with three drought indexes. Theoretical and Applied Climatology. 2019 137(3-4:2977-2992.
[9].  Ababaei, B. Spatio‐temporal variations of seven weather variables in Iran: application of CRU TS and GPCC data sets. Irrigation and Drainage. 2020. 69(1):164-185.
[10].            Miri M., Azizi, GH. Khosh Akhlagh, F, Rahimi M. Statistical evaluation of precipitation and temperature network data with observational data in Iran. Iran-Watershed Management Science & Engineering. 2017.10(35): 39-50.
[11].            Shi H, Li T, Wei J. Evaluation of the gridded CRU TS precipitation dataset with the point raingauge records over the Three-River Headwaters Region. Journal of Hydrology. 2017 May. 548: 322-332.
[12].            Shokri Koochak S., Akhond Ali A., Mohammad Reza Sharifi M.R. Performance Assessment of The PERSIANN and PERSIANN-CDR Satellite Precipitation Algorithms and Survey of the Irregularities Effect on It (Case Study: Helleh River Basin). Ecohydrology. 2020. 7(2): 511-527.
[13].            Jafary Godeneh M., Salajegh A., Haghighi P. Forecast Comparative of Rainfall and Temperature in Kerman County Using LARS-WG6 Models. Ecohydrology. 2020. 7(2): 529-538.
[14].             Javadi F., Rezayan S., Jozi, S.A. Evaluating Satellite Indicators in Determining the Level of Aquatic Areas Using Satellite Sensors (Case study: Zaribar Wetland , Kurdistan Province). Ecohydrology. 2020. 7(2): 539-550.
[15].            Mirzaei S., Vafakhah M., Pradhan B., Jalil Alavi S.J. Prediction and Analysis of Flood Zones under Climate Change Conditions based on CanESM2 Model’s Scenarios. Ecohydrology. 2020. 7(2): 551-562.
[16].            Ramezani Etedali H., Liaghat A., Parsinejad M., Tavakkoli A.R. AquaCrop Model Calibration and Evaluation in Irrigation Management for Main Grains. Iranian Journal of Irrigation and Drainage. 2016. 10(3-57): 389-397.
[17].            Ramezani F., Kaviani A., Ramezani Etedali H. Evaluation of AquaCrop Model for different Harvesting time of Alfalfa in Ardestan. Journal of Water and Soil. 2017. 31(3): 738-753.
[18].            Zabihi A., Darzi-Nafchali A., Khoshravesh M. Rice yield under surface and subsurface drainage managements and evaluation of AquaCrop model. Journal of Irrigation and Water Engineering. 2015 15(4): 150-163.
[19].            Steduto, P., T.C. Hsiao, D. Raes, and E. Fereres. 2009. AquaCrop—Th e FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron. J. 101:426–437.
[20].            Raes, D., P. Steduto, T.C. Hsiao, and E. Fereres. 2009. AquaCrop-The FAO crop model for predicting yield response to water: II. Main algorithms and soft ware description. Agron. J. 101:438–447.
[21].            Hosseini Moghari, M., Araghi Nejad, SH., and Ebrahimi, K. A study of the accuracy of global networked rainfall information in the Urmia Lake basin. Iranian Water and Soil 2017. 3: 73-88.
[22].            Razavi, A.R., Nasiri Mahalati, M., Kochaki, A.R., and Beheshti, A.R. Feasibility of using AgMERRA to fill the vacuum of rain and temperature data at stations Afghanistan Synoptic. Journal of Water and Soil. 2018 3(32): 601-616.
[23].            Haji Hosseini H., Haji Hosseini M., Najafi A., Murid S., Delavar Moatan Fada J. Evaluation of global climate data SWAT and CRU model in rainfall simulation-runoff of Helmand upstream basin.2013.
[24].            Yaqobi F, Banayan Aval M, Asadi GH.A. Evaluation of AgMERRA networked data in simulation of yield and irrigation needs of rainfed wheat in Khorasan Razavi province. Journal of Water and Soil. 2018. May-Jan. 32(2): 415-431
[25].            Akhavan, S., and Delavar, N. Evaluation of CFSR and LARS WG data accuracy in
simulation of climatic parameters of Chaharmahal and Bakhtiari province. Natural Geography Research. 2019. 2: 321-334
[26].            Khalili N, Davari K, Alizadeh A, Kafi M, Ansari H. Simulation of rainfed wheat yield using aquaculture plant model, a case study of the station Dima Sisab Agricultural Research, North Khorasan. Journal of Water and Soil. Nov-Dec. 2014. 28(5): 930-939
[27].            Alizadeh H, Nazari B, Parsinejad M, Ramezani Etedali H, Janbaz HR. Evaluation of AquaCrop model in wheat irrigation management in Karaj region. 2010. 4(2): 273-283.
[28].            Emdad, MR, Tafteh A, Ghalibi S. Accreditation of the aquaculture model in simulating wheat yields affected by the number of irrigation shifts. water and soil. 2018 Jun 17; 32 (3): 463-73.