ارزیابی خطرپذیری رخداد سیل در حوضۀ تجن با استفاده از سیستم اطلاعات مکانی

نوع مقاله : پژوهشی

نویسندگان

1 کارشناس ارشد آب و سازه ‏های هیدرولیکی، دانشکدۀ مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران

2 دانشیار دانشکدۀ مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران

چکیده

در پژوهش حاضر سعی شده است تا ارزیابی مناسبی از وضعیت سیل‏خیزی و خطرپذیری سیل برای حوضۀ تجن ارائه شود. به این منظور، با تهیۀ نقشه‏های پهنه‏بندی خطر سیل و تحلیل حساسیت سیل‏خیزی برای حوضه، مناطق مستعد شناسایی و میزان خطرپذیری برای حوضه سنجش شده است. به این منظور، از مدل تلفیقی مبتنی بر تحلیل سلسله‌مراتبی و منطق فازی (F-AHP) به منظور اولویت‏بندی، شناسایی عوامل مؤثر بر رخداد سیل (شامل عوامل زمین‏شناسی، اقلیمی و انسانی و...) و همچنین، تعیین میزان تأثیر هر یک از شاخص‏های ارزیابی سیل (شامل سرعت جریان، عمق جریان، متوسط بارش، تبخیر، شیب، الگوی زهکشی، دشت سیلابی، شبکۀ راه‏ها و پوشش زمین) بهره گرفته شده است. این اطلاعات بعد از ارزیابی محاسباتی فازی در MATLAB به محیط GIS انتقال یافته و نقشه‏های شاخص فازی‏سازی‌شده/ غیرفازی‏سازی‌شده منطقه تهیه شده است. هدف از این کار، افزایش دقت و همچنین به‌کارگیری تلفیقی مدل فازی است. این نقشه‏ها برای شناسایی مناطق حساس سیل (نقشۀ خطرپذیری) و پهنه‏بندی مخاطره (در 5 گروه پرخطر تا کم‌خطر) به کار برده شده است. با توجه به نتایج حاصل از سنجش خطرپذیری در حوضۀ تجن مشخص شده است که مهم‌ترین تمرکز مناطق حساس سیل در محدودۀ رودخانۀ اصلی نسبت به سایر بخش‏ها و در محدودۀ دلتای رودخانه در مصب است. همچنین، با توجه به الگوی زهکشی منطقه به‌خصوص در بخش شرقی حوضه، مشخص شده است که این مناطق نیز از حساسیت زیاد سیل‏خیزی برخوردار بوده که با توجه به ساختار زهکشی‏ها می‏توان بیان کرد که تأثیر رخداد به صورت فعالیت‏های زمین‏شناسی است.

کلیدواژه‌ها


عنوان مقاله [English]

Flood Hazard Assessment Using Geospatial Information System in Tajan Basin

نویسندگان [English]

  • Amir Hossein Mohammad Pour 1
  • Alireza Vafaeinejad 2
1 Master of Water and Hydraulic Structures Engineering, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran
2 Associate Professor, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran
چکیده [English]

In this study, it is attempted to provide a proper assessment of flood status and flood risk for Tajan watershed. In this regard, by preparing flood hazard zoning maps and flood sensitivity analysis for the basin, susceptible areas have been identified and the extent of the hazard has been assessed for the basin. To this end, a fuzzy hierarchical fuzzy analysis (F-AHP) integrated model is used to prioritize, identify the factors influencing flood events (including geological, climate, human factors, etc.) and determine the extent of impact of each. Flood assessment indices (including flow velocity, flow depth, mean precipitation, evaporation, slope aspect, drift pattern, flood plain, road network and land cover) were used. This information was transferred to the GIS environment after fuzzy evaluation in MATLAB and fuzzified/defuzzified index maps of the area were prepared. The goal of this work is to increase accuracy as well as integrate fuzzy models. These maps are used to identify flood sensitive areas (hazard maps) and hazard zoning (in 5 high-risk to low-risk groups). Based on the results of the hazard assessment, it has been identified that the most important concentration of flood sensitive areas in the main river is in relation to other parts and in the delta. Also, according to the drainage pattern of the region, especially in the eastern part of the basin, it has been determined that these areas also have a high sensitivity to flooding.

کلیدواژه‌ها [English]

  • Flood Risk Assessment
  • Fuzzy logic
  • Analytical Hierarchy Process (AHP)
  • Geospatial Information System (GIS)
  • Tajan River Basin
[1]. International Federation of Red Cross and Red Crescent Societies World disaster report. Oxford: Oxford University Press, 1998; 152 p.
[2]. Zhang JQ, Zhou CH, Xu KQ. Flood disaster monitoring and evaluation in China. Environ Hazards. 2002; 4: 33-43.
[3]. Xie T, Zhou JZ, Song LX. Dynamic evaluation and implementation of flood loss based on GIS grid data. Commun Comput Inf Sci. 2011; 228: 558-565.
[4]. Alderman K, Turner LR, Tong SL. Floods and human health: a systematic review. Environ Int. 2012; 47: 37-47.
[5]. Azarafza M, Ghazifard A, Akgün H, Asghari‑Kaljahi E. Landslide susceptibility assessment of South Pars Special Zone, southwest Iran. Environ Earth Sci. 2018; 77(24): 805.
[6]. Wang YM, Li ZW, Tang ZH. A GIS-based spatial multicriteria approach for flood risk assessment in the Dongting Lake Region, Hunan, Central China. Water Resour Manag. 2011; 25: 3465-3484.
[7]. ISNA. The news of geo-hazard occurrence in Iran. Tehran: Iranian Students News Agency. 2020; (In Persian).
[8]. Zou Q, Zhou J, Zhou C. Song L, Guo J. Comprehensive flood risk assessment based on set pair analysis-variable fuzzy sets model and fuzzy AHP. Stoch Environ Res Risk Assess. 2013; 27: 525-546.
[9]. Yang X, Ding J, Hou H. Application of a triangular fuzzy AHP approach for flood risk evaluation and response measures analysis. Nat Hazards. 2013; 68: 657-674.
 
[10]. Chen PA, Chang LC, Chang FJ. Reinforced Recurrent Neural Networks for Multi-Step-Ahead Flood Forecasts. J Hydrol. 2013; 497: 71-79.
[11]. United Nations, Department of Humanitarian Affairs, UNDHA. Mitigating natural disasters: phenomena, effects and options—a manual for policy makers and planners. New York: United Nations, 1991; 96 p.
[12]. United Nations, Department of Humanitarian Affairs, UNDHA Internationally agreed glossary of basic terms related to disaster management, DNA/93/36. Geneva: United Nations, 1992; 96 p.
[13]. Vojtek M, Vojteková J. Flood Susceptibility Mapping on a National Scale in Slovakia Using the Analytical Hierarchy Process. Water. 2019; 11(2): 364.
[14]. Vafaeinejad A, Yousefzade J, Yousefi H, Mohammadi Varzane N. Using GIS and Linear Programming to Manage Water Distribution in Irrigation Networks (Case Study: Downstream Lands of Aq-chay Dam). Iran J EcoHydrol. 2014; 1(2): 123-132 (In Persian).
[15]. Mohamadi Varzaneh N, Vafaeinejad A. Water Allocation in Irrigation Networks by using of Decision Support System Based on the Geospatial Information System (GIS) and Particle Swarm Optimization (PSO). Iran JEcoHydrol. 2015; 2(1): 39-49 (In Persian).
[16]. Vafaeinejad A. Cropping Pattern Optimization by Using of TOPSIS and Genetic Algorithm Based on the Capabilities of GIS. Iran JEcoHydrol. 2016; 3(1): 69-82 (In Persian).
[17]. Mahmoudi Jam S, Ghoreyshi Najaf Abadi SH, Vafaeinejad A, Moridi A, Khazaee S. Potential Evaluation of Underground Water Resource with the Hybrid Approach to Particle Swarm Optimization Algorithm and Geospatial Information Systems (Case Study: Mehran, Ilam). Iran J EcoHydrol. 2018; 4(4): 1199-1213 (In Persian).
[18]. Goodarzi Z, Vafaeinejad A. Using Shuffled Frog-Leaping Algorithm (SFLA) And Geospatial Information System (GIS) To Help Optimally Operation Of The Dam Reservoir (Case Study: Dorudzan Dam Reservoir). Iran J EcoHydrol. 2020; 6(4): 983-991 (In Persian).
[19]. Nguyen MD, Mukand SB, Huynh TL. Evaluation of flood risk parameters in the Day River Flood Diversion Area, Red River Delta, Vietnam. Nat Hazards. 2011; 51(1): 169-194.
[20]. Saaty T, Vargas LLG. Models, methods, concepts & applications of the analytic hierarchy process (2nd ed.). New York: Springer, 2012; 348 p.
[21]. Saaty TL. Fundamentals of decision making and priority theory (2nd ed.). Pittsburgh: RWS Publications 2010; 477 p.
[22]. Chang L, Amin MZM, Yang S, Chang F. Building ANN-Based Regional Multi-Step-Ahead Flood Inundation Forecast Models. Water. 2018; 2018(10): 1283.
[23]. Covino T. Hydrologic connectivity as a framework for understanding biogeochemical flux through watersheds and along fluvial networks. Geomorphol. 2017; 277: 133-144.
[24]. Guha DS, Hargitt D, Hoyois P. Thirty years of natural disasters 1974-2003: the numbers. Belgium: Centre for Research on the Epidemiology of Disasters, 2004; 293 p.
[25]. Ahmed F, Srinivasa A, Rao K. Prioritization of Sub-watersheds based on Morphometric Analysis using Remote Sensing and Geographic Information System Techniques. Int J Remote Sens GIS. 2015; 4(2): 51-65.
[26]. Fernández D, Lutz M. Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Eng Geol. 2010; 111: 90-98.
[27]. Qin Q, Tang H, Chen H. Zoning of highway flood-triggering environment for highway in fuling district, Chongqing. J Int Soc Optical Eng. 2011; 8205(820530): 1-8.
[28] Ismáil M, Saanyol IO. Application of remote sensing (RS) and geographic information systems (GIS) in flood vulnerability mapping: case study of river Kaduna. Int J Geomat Geosci. 2013; 3(3): 618-627.
[29]. Armenakis C, Nirupama N. Flood risk mapping for the city of Toronto, Procedia-Econom Finan. 2014; 18: 320-326.
[30]. Demir V, Kisi O. Flood Hazard Mapping by Using Geographic Information System and Hydraulic Model: Mert River, Samsun, Turkey. Adv Meteorology. 2016; 2016(4891015): 1-19.
[31]. Das S. Geographic information system and AHP-based flood hazard zonation of Vaitarna basin, Maharashtra, India. Arab J Geosci. 2018; 11: 576.
[32]. Hammami S, Zouhri L, Souissi D, Souei A, Zghibi A, Marzougui A, Dlala M. Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arab J Geosci. 2019; 12: 653.
[33]. Aghanabati A. Geology of Iran. Tehran: Geological Survey of Iran press, 2007; 708 p (In Persian).
[34]. Iran Meteorological Organization. Climatological data from Sari station. The Iran Meteorological Organization. 2019; http://www.irimo.ir/. Accessed 5 Oct 2019
 
[35]. Dadios EP. Fuzzy logic—algorithms, techniques and implementations. London: InTech press, 2012; 301 p.
[36]. ESRI. ArcGIS software version 10.4, international supplier of geographic information system software, web GIS and geodatabase management applications. 2017; https://www.esri.com/. Accessed 1 May 2017