[1]. Dey P, Mishra A. Separating the impacts of climate change and human activities on stream flow: A review of methodologies and critical assumptions. Journal of Hydrology. 2017; 548: 278-90.
[2]. Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. United Kingdom and New York, NY, USA: Cambridge University Press, Cambridge; 2013.
[3]. Schubert SD, Lim YK. Climate variability and weather extremes: Model-simulated and historical data. In Extremes in a Changing Climate. Netherlands: Springer; 2013 (pp. 239-285).
[4]. Miao C, Duan Q, Sun Q, Li J. Evaluation and application of Bayesian multi-model estimation in temperature simulations. Progress in physical geography. 2013; 37(6):727-44.
[5]. Hargreaves GH, Allen RG. History and evaluation of Hargreaves evapotranspiration equation. Journal of Irrigation and Drainage Engineering. 2003; 129(1):53-63.
[6]. Vanderlinden K, Giraldez JV, Van Meirvenne M. Assessing reference evapotranspiration by the Hargreaves method in southern Spain. Journal of Irrigation and Drainage Engineering. 2004; 130(3):184-91.
[7]. Samani Z. Estimating solar radiation and evapotranspiration using minimum climatological data. Journal of irrigation and drainage engineering. 2000; 126(4):265-7.
[8]. Liang L, Li L, Liu Q. Temporal variation of reference evapotranspiration during 1961–2005 in the Taoer River basin of Northeast China. Agricultural and Forest Meteorology. 2010; 150(2):298-306.
[9]. Guo B, Zhang J, Gong H, Cheng X. Future climate change impacts on the ecohydrology of Guishui River Basin, China. Ecohydrology & Hydrobiology. 2014; 14(1):55-67.
[10]. Li S, Kang S, Zhang L, Zhang J, Du T, Tong L, Ding R. Evaluation of six potential evapotranspiration models for estimating crop potential and actual evapotranspiration in arid regions. Journal of Hydrology. 2016; 543:450-61.
[11]. Gharbia SS, Smullen T, Gill L, Johnston P, Pilla F. Spatially distributed potential evapotranspiration modeling and climate projections. Science of the Total Environment. 2018; 633:571-92.
[12]. Babaeian I, Kouhi M. Agroclimatic indices assessment over some selected weather stations of Khorasan Razavi Province under climate change scenarios. Journal of Water and Soil. 2012; 26(4): 953-967. (In Persian).
[13]. Gharbia S, Smullon T, Gill L, Johnston P, Pilla F. Spatially distributed potential evapotranspiration modeling and climate projections. Science of The Total Environment. 2018; 571:592-633.
[14]. Goudarzi M, Salahi B, Hosseini SA. Estimation of evapotranspiration rate due to climate change in the Urmia Lake basin. Iranian Journal of Watershed Management Science and Engineering. 2018; 13(41):1-2.
[15]. Javaherian M, Ebrahimi H, Aminnejad B. Prediction of changes in climatic parameters using CanESM2 model based on RCP scenarios (case study): Lar dam basin. Ain Shams Engineering Journal. 2020;
https://doi.org/10.1016/j.asej.2020.04.012.
[16]. Liu Y, Chon J, Pan T. Spatial and temporal patterns of drought hazard for China under different RCP scenarios in the 21st century. International Journal of Disaster Risk Reduction. 2020.
[17]. Salarian M, Najafi M, Davari K, Eslamiyan SS, Heidari M. The most Appropriate Method to Estimate Potential Evapotranspiration in Meteorological Data Scarce Condition in the Warm and Cold Months of the Year (Case Study of Isfahan). Iranian Journal of Irrigation and Drainage. 2012; 1(8):62-73. (In Persian).
[18]. Ojwang G, Agatsiva J, Situma C. Analysis of climate change and variability risks in the smallholder sector. Environment and Natural Resources Management working paper; 2010.
[19]. Kouhi M, Sanaei- Nejad H. Evaluation of Climate Change Scenarios based on Two Statistical Downscaling Methods for Reference Evapotranspiration in Urmia Region. Iranian Journal of lrrigation and Drainage. 2014; 4(7): 559-574. (In Persian).
[20]. Chong-Hai XU, Ying X. The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble. Atmospheric and Oceanic Science Letters. 2012; 5(6):527-33.
[21]. Chattopadhyay N, Hulme M. Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agricultural and Forest Meteorology. 1997; 87(1):55-73.
[22]. Xu CY, Singh VP. Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland. Water Resources Management. 2002; 16(3):197-219.
[23]. Allen RG, Pereira LS, Raes D, Smith M. Crop evapotranspiration Guidelines for computing crop water requirements FAO irrigation and drainage paper 56, Rome, Italy: FAO; 1998.
[24]. Hargreaves GH. Moisture availability and crop production. Trans. ASAE. 1975; 18 (5): 980–984.
[25]. Hargreaves GH, Samani ZA. Estimating potential evapotranspiration. J. Irrig. Drain. Div. 1982; 108: 225–230.
[26]. Hargreaves GH, Samani ZA. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985; 1: 96–99.
[27]. Oudin L, Hervieu F, Michel C, Perrin C, Andréassian V, Anctil F, Loumagne C. Which potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. Journal of hydrology. 2005; 303(1-4):290-306.
[28]. Thornthwaite CW. An approach toward a rational classification of climate. Geogr. Rev. 1948; 38: 55–94.
[29]. Blaney HF, Criddle WD. Determining Water Requirements in Irrigated Area from Climatological Irrigation Data, US Department of Agriculture, Soil Conservation Service, Technical Paper; 1950.
[30]. Pruitt W, Doorenbos J. Empirical Calibration: A Requisite for Evapotranspiration Formulae Based on Daily or Longer Mean Climate Data?. The Committee; 1977.
[31]. Kharrufa N. Simplified equation for evapotranspiration in arid regions. Beiträge zur Hydrologie. 1985; 5: 39–47.
[32]. Romanenko VA. Computation of the autumn soil moisture using a universal relationship for a large area. Proc. of Ukrainian Hydrometeorological Research Institute. 1961;3:12-25.
[33]. Dinpashoh Y. Study of Reference Crop Evapotranspiration in I.R. of Iran. Agricultural Water Management, 2003; 84, 123-129. (In Persian).
[34]. Kouchakzadeh M. Nikbakht J. Comparison of different methods to estimate reference evapotranspiration in Iran different climate with PMFAO Standard Method, Agricultural Sciences. 2004;10(3): 43-57.