تعیین مناطق مستعد سیل با مدل ‏های FR، SI و Shannon به ‏منظور کاهش مخاطرات سیل (مطالعۀ موردی: حوضۀ‏آبخیز کشکان)

نوع مقاله : پژوهشی

نویسندگان

1 دانشیار دانشکدۀ علوم و فنون نوین، دانشگاه تهران

2 استادیار گروه مهندسی آب، دانشکدۀ کشاورزی و منابع طبیعی، دانشگاه لرستان

3 دانشجوی دکتری سازه ‏های آبی، دانشکدۀ کشاورزی و منابع طبیعی، دانشگاه لرستان

4 دانشجوی دکتری علوم و مهندسی آبخیز، دانشکدۀ منابع طبیعی و علوم زمین، دانشگاه کاشان

5 کارشناس آب منطقه ‏ای لرستان و دانشجوی دکتری سازه‏ های آبی، دانشکدۀ کشاورزی، دانشگاه لرستان

چکیده

تعیین نقشۀ مناطق مستعد سیل با هدف ذخیرۀ رواناب‏ها به منظور تأمین آب مورد نیاز برای اهداف مختلف و نیز کنترل خسارت‌های ناشی از سیل، اهمیت و ضرورت زیاد این موضوع را برای حفاظت از منابع طبیعی و انسانی نشان می‏د‏هد. استان لرستان و به‏ویژه حوضۀ کشکان شامل سلسله، دلفان، دوره، خرم‏آباد، پلدختر و کوهدشت، بسیار سیل‏خیز است و بارها دچار خسار‌ت‌های ناشی از سیل شده و در فروردین 1398 بزرگ‏ترین سیل 200 سال اخیر را تجربه کرده است. در پژوهش حاضر، تلاش شده است تا نقشۀ پهنه‏بندی سیلاب به‏منظور کاهش مخاطرات سیل حوضۀ آبخیز کشکان با استفاده از مدل‏های نسبت فراوانی، شاخص آماری و آنتروپی شانون و نیز با بهره‏گیری از روش‏های مبتنی بر ArcGIS برای بهبود تصمیم‏گیری و مدیریت سیل در این منطقه ارائه شود. به این منظور، موقعیت جغرافیایی 123 نقطۀ سیل‏گیر در منطقه به دو گروه واسنجی و اعتبارسنجی تقسیم شدند. در اجرای هر سه مدل از پارامترهای مؤثر بر سیل شامل شیب، جهت شیب، انحنای زمین، زمین‏شناسی، کاربری اراضی، خاک‏شناسی، شاخص رطوبت توپوگرافی، بارش، تراکم آبراهه، فاصله از آبراهه و مدل ارتفاعی رقومی منطقه استفاده شد. همچنین، برای اعتبارسنجی نتایج مدل‏ها از منحنی مشخصۀ عملکرد در نرم‏افزار SPSS استفاده شد. حساسیت‏سنجی پارامترها برای هر سه مدل نیز انجام شد که فاصله از رودخانه، مؤثرترین پارامتر مشترک در هر سه مدل بود. بیشترین صحت برای این منطقه به مدل آنتروپی شانون (82/0، خیلی خوب) اختصاص داشت و بعد از آن، مدل نسبت فراوانی و شاخص آماری (78/0، خوب)، مناسب این منطقه معرفی شدند. نتایج نشان داد مدل آنتروپی شانون، مساحت بیشتری از حوضه را تحت شرایط پتانسیل زیاد خطر سیل‏گیری نشان می‏دهد (حدود 40 درصد از مساحت منطقه در طبقۀ خطر سیل زیاد و خیلی زیاد) که اغلب مناطق غربی و همچنین، مناطق مرکزی حوضه را شامل می‏شوند که در کوهدشت، خرم‏آباد و پلدختر قرار دارند و باید در اولویت اول برنامه‏ریزی و مدیریت ریسک سیل در این حوضه قرار گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of flood prone areas with FR, SI and Shannon models in order to reduce flood risks (Case study: Kashkan watershed)

نویسندگان [English]

  • Hossein Yousefi 1
  • H Y 2
  • Azadeh Arshia 3
  • Yazdan Yarahmadi 4
  • ahmad godarzi 5
1 Department of Renewable Energies and Environment, Faculty of New Sciences and Technologies, University of Tehran
2 L
3 Department of Watershed, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Lorestan, Iran
4 Faculty of New Sciences and Technologies Renewable Energies and Environment.
5 PhD student in water structures, Faculty of Agriculture and Natural Resources, Lorestan University, Iran
چکیده [English]

Lorestan province, especially the Kashkan basin, is very flooded and has suffered flood damage many times, and in April 2019, it experienced the biggest flood in the last 200 years. In this study, an attempt has been made to map flood zonation to reduce flood hazards in Kashkan watershed using FR, SI and Shannon models and also using ArcGIS techniques to improve flood decision-making and management in Provide this area. For this purpose, the geographical location of 123 flood-catching points in the region were divided into two groups: calibration and validation. In the implementation of all three models of effective parameters in floods including: slope, slope direction, land curvature, geology, land use, soil science, topographic moisture index, precipitation, waterway density, distance from waterway and digital elevation model of the area used Were. The ROC curve is also used to validate the results of the models. The highest accuracy for this region was attributed to Shannon entropy model, followed by frequency ratio models and statistical index, respectively. Due to the fact that surface water management is very important in order to prevent the recurrence of high flood damage in this area, so the use of flood sensitivity maps to improve management and decision-making in flood management is essential.

کلیدواژه‌ها [English]

  • Flood map
  • FR model
  • Kashkan Basin
  • Shannon model
  • SI model
[1]. Alizadeh A. Principles of Applied Hydrology, Imam Reza University Press. Principles of Applied Hydrology, Imam Reza University Press, 2009; 26th edition (In Persian).
[2]. Barkhordari J, Tireh Shabankareh K, Mehrjerdi MZ, Khalkhali M. Study of water spreading effects on quantitative and qualitative changes of pastural cover: A case study in station of Sarchahan water spreading (Hormozgan province). Watershed Researches in Pajouhesh & Sazandegi. 2009; 82: 65-72 (In Persian).
[3]. Azadi F, Sadough H, Qahrdavi M, Shahabi H. Zoning of flood risk sensitivity in Kashkan river basin using two models EBE and WOE. Journal of Geography and Environmental Hazards, 2020, 33: 45-60. [Persian].
[4]. Ismaili Alavicheh A, Karimi S, Alavipour F. Vulnerable assessment of urban areas against floods with fuzzy logic, Quarterly Journal of Environmental Science and Technology, 2017. 5: 12-1. [Persian].
[5]. Arianpour, M. and Jamali, A. A. Flood Hazard Zonation using Spatial Multi-Criteria Evaluation (SMCE) in GIS (Case Study: Omidieh-Khuzestan). European Online Journal of Natural and Social Sciences. 2015, 4(1): 39 – 49.
[6]. Khosravi, K., Pourghasemi, H. R., Chapi, K., & Bahri, M. Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon’s entropy, statistical index, and weighting factor models. Environmental monitoring and assessment. 2016, 188(12), 656.
[7]. Chapi, K., Singh, V. P., Shirzadi, A., Shahabi, H., Bui, D. T., Pham, B. T., & Khosravi, K. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environmental Modelling & Software, 2017, 95, 229-245.
 
[8]. Abedini M, Fathi M. Flood Risk Mapping and Evaluation by using the Analytic Network Process Case Study: Khiav Chai Catchment. Hydrogeomorphology. 2015; Volume 1, Issue 3, Page 81-97. [Persian].
[9]. Hosseini M, Jafar Biglou M, Ground F. Determination of flood catchment areas of Kashkan river using hydraulic model to reduce flood risks. Journal of Risk Knowledge, 2015. 2 (3): 355-369. [Persian].
[10].            Siahkamari S, Zinivand H. Potential finding of flood prone areas using statistical index model and weight of evidence (Maderso watershed, Golestan). Journal of Remote Sensing and GIS in Natural Resources. 2016, 7 (4): 116-133. [Persian].
[11].            Abedini M, Beheshti Javid E. Flood Hazard Mapping of Lighvan Chai Watershed Using Network Analysis Process Model (ANP) and GIS. Geographic Space, Islamic Azad University of Ahar Branch. 2016; 55: 293-312. [Persian].
[12].            Kanani-Sadat Y, Arabsheibani R, Karimipour F, Nasseri M. A New Approach to Flood Susceptibility Assessment in Data-Scarce and Ungauged Regions Based on GIS-based Hybrid Multi CriteriaDecision-Making Method, Journal of Hydrology 2019; Volume 572, pp 17-31.
[13].            Bui, D. T., Panahi, M., Shahabi, H., Singh, V. P., Shirzadi, A., Chapi, K., Ahmad, B. B. (2018). Novel hybrid evolutionary algorithms for spatial prediction of floods. Scientific reports, 8(1), 15364.
[14].            Azad Talab M, Shahabi H, Chapi K, Shirzadi A. Prediction of flood risk in Sanandaj city using hybrid models. Master Thesis in Environmental Risk, 2019, University of Kurdistan. [Persian].
[15].            Tehrany MS, Jones S, Shabani F. Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques. Catena. 2019; 1(175):174-92.
[16].            Faramarzi H, Hosseini M, Pourghasemi H, Farnaghi M. Flood risk assessment and zoning in Golestan National Park. Journal of Echo Hydrology, 2019. 6 (4): 1055-1068. [Persian].
 
[17].            Mokhtari D, Rezaei Moghadam, Rahimpour T, Moezz S. Preparation of flood risk map in Gomnab Chay catchment using model ANP and techniques GIS. Journal of Echo Hydrology. 2020, 7 (2): 502-497. [Persian].
[18].            Hosseinzadeh M, Panahi R, Tarband T. Flood sensitivity zoning in Songhor catchment in Kermanshah province. Journal of Echo Hydrology. 2020, 7 (4): 873-889. [Persian].
[19].            Moore ID, Grayson RB, Ladson AR. Digital terrain modelling. A review of hydrological, geomorphological, and biological applications. 1991, Hydrol Process 5, 3–30.
[20].            Bui D, Lofman O, Revhaug I, Dick O. Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Natural Hazards. 2011, 59(3), 1413–44.
[21].            Bednarik M, Magulova B, Matys M, Marschalko M. Landslide Susceptibility Assessment of the Kral ovany–Liptovsky Mikulas Railway Case Study. J. Physics and Chemistry of the Earth. 2010, 35(3-5): 162-171.
[22].            Entezari M, Jalilian T, Darvish Khatouni J. Zoning of flood susceptibility map using performance evaluation of frequency ratio and weight of evidence methods (Kermanshah province). Journal of Spatial Analysis of Environmental Hazards. 2019, 6 (4): 143-160.
[23].            Tahmasebipour N, Rahmati O, Ghorbaninejad S. Predicting the sensitivity of geyser erosion in Seymareh region based on the Hamel model of certainty and determining the importance of factors affecting it, Echo Hydrology. 2016, 3 (1): 83-93. [Persian].
[24].            Tehrany M. S, Pradhan B, Jebur M. N. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of hydrology. 2014, 512, 332-343.
[25].            Tehrany MS, Pradhan B, Jebur MN. Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stochastic Environmental Research and Risk Assessment. 2015, 29(4): 1149-1165.