ارزیابی مدل بیان ژن در پیش‌بینی مکانی شوری آب زیرزمینی و مقایسۀ آن با مدل‌های زمین‌آماری (مطالعۀ موردی: دشت مشهد)

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتر‌ی منابع آب، دانشکدۀ کشاورزی، دانشگاه بیرجند

2 دانشیار گروه علوم و مهندسی آب، دانشکدۀ کشاورزی، دانشگاه بیرجند

3 استاد گروه علوم و مهندسی آب، دانشکدۀ کشاورزی، دانشگاه بیرجند

چکیده

آب‌های زیرزمینی از منابع مهم بهره‌برداری در مناطق خشک و نیمه‌خشک هستند. به همین دلیل، به‌منظور حفظ کیفیت آب‌های زیرزمینی و مدیریت بهینۀ آن، اطلاع از پراکنش مکانی و زمانی آنها بااهمیت است و پایش و پهنه‌بندی آنها به عنوان اصل مهمی در برنامه‌ریزی‌های منابع آب کشور باید مد نظر قرار بگیرد. هدف از انجام پژوهش حاضر، پهنه‌بندی هدایت الکتریکی آب زیرزمینی آبخوان دشت مشهد با استفاده از 5 روش عکس فاصله (IDW)، تخمین‌گر موضعی (GPI)، تخمین‌گر عام (LPI)، کریجینگ و کوکریجینگ و همچنین، ارزیابی مدل برنامه‌ریزی بیان ژن در پیش‌بینی این پارامتر با استفاده از داده‌های مکانی است. برای انجام پژوهش حاضر از داده‌های 122 حلقه چاه مشاهده‌ای در محدودۀ آبخوان دشت مشهد استفاده شد. برای مقایسۀ روش‌های استفاده‌شده از سه معیار ارزیابی مجذور میانگین مربعات خطا (RMSE)، میانگین قدرمطلق خطا (MAE) و معیار نش- ساتکلیف (NSE) استفاده شد. ترسیم نیم‌تغییرنما در GS+ نشان داد داده‌های هدایت الکتریکی بهترین برازش را در مدل کروی دارند. نتایج پژوهش حاضر نشان داد از میان روش‌های یادشده، مدل برنامه‌ریزی بیان ژن با خطای µmos/cm 54/275 RMSE=،µmos/cm  15/223  MAE= و 94/0 NSE=و پس از آن، روش کوکریجینگ با خطای µmos/cm 59/573RMSE=، µmos/cm 73/319 MAE=و 72/0 NSE= ‌بیشترین دقت و روش تخمین‌گر موضعی (GPI) با خطای µmos/cm 11/996RMSE=،µmos/cm  56/755 MAE= و 16/0 NSE= کمترین دقت در این زمینه را داشتند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Gene Expression Model in Spatial Prediction of Groundwater Salinity and Its Comparison with Geostatistical Models (Case study: Mashhad plain)

نویسندگان [English]

  • Saeide Hoseinabadi 1
  • Hossein khozeymehnezhad 2
  • Abbas Khashei Siuki 3
1 Department of Water Science and Engineering, Birjand University. Iran
2 Faculty member/university of birjand
3 university of birjand, Avini street, birjand city, soth khorasan province,iran
چکیده [English]

Groundwater is an important source of exploitation in arid and semi-arid regions. For this reason, in order to maintain groundwater quality and its optimal management, it is important to know their spatial and temporal distribution and their monitoring and zoning should be considered as an important principle in the country's water resources planning. The aim of this study was to zoning the electrical conductivity of groundwater in the Mashhad plain aquifer using 5 methods of distance inverse geostatistics (IDW), local estimator (GPI), general estimator (LPI), kriging and cokriging and also evaluating the gene expression programming model in predicting this The parameter is using spatial data. For the present study, data from 122 observation wells in the aquifer area of Mashhad plain were used. To compare the methods used, two squares evaluation criteria were the mean squared error (RMSE) and the mean absolute error (MAE). The semi-variable plot in GS + showed that the electrical conductivity data fit best in the spherical model. The results of the present study showed that among the mentioned methods, the inverse distance method (IDW) with error rate RMSE=0.3 mos/cm and MAE=0.16 mos/cm and then the model of gene expression programming with RMSE=275.54 mos/cm MAE=223.15 mos/cm with the highest accuracy and local estimator method (GPI) with RMSE=996.11 mos/cm and MAE=755.56 mos/cm, had the least accuracy in this field.

کلیدواژه‌ها [English]

  • Groundwater
  • Gene expression programming
  • Statistical context
  • Electrical conductivity
 [1]. Lucassen E. C. H. E. T, Smolders, A. J, van der Salm A. L, Roelofs J. G. M. High groundwater nitrate concentrations inhibit eutrophication of sulphate-rich freshwater wetlands. Biogeochemistry. 2004; (2): 249-267.
[2]. Ayotte J. D, Belaval M, Olson S. A, Burow K. R, Flanagan S. M, Hinkle S. R, Lindsey B. D. Factors affecting temporal variability of arsenic in groundwater used for drinking water supply in the United States. Science of the Total Environment. 2015; (505): 1370-1379.‏
[3]. Ghorbani K. Evaluation of the Empirical Bayesian Kriging method in ground water level zoning. Journal of water and soil conservation. 2018; 25(1): 165-182.
[4]. Goovaerts P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of hydrology. 2000; (1-2): 113-129.
[5]. Einax J. W, Soldt U. Geostatistical and multivariate statistical methods for the assessment of polluted soils—merits and limitations. Chemometrics and Intelligent Laboratory Systems. 1999; (1): 79-91.
[6]. Hassani Pak A. geostatistics. 3. Tehran: University of Tehran; 2010. [Persian]
[7]. Nikbakht S, Delbari M. Estimation of Groundwater Levels using Geostatistical Methods. Journal of Water and Sustainable Development. 2014; 1(1): 49-56.
[8]. Shabani M. Evaluation of Geostatistical Methods in Preparing Groundwater Quality Maps and Their Zoning (Case Study: Neyriz Plain, Fars Province). Physical Geography Quarterly. 2011; (13): 83-96. [Persian]
[9]. Delbari M, Afrasiab P, Salari M. Mapping Water Salinity and Sodicity Using Selected Geostatistical Methods, Case Study: Kerman Plain. Journal of Water Resources Engineering. 2013; (16): 11-24. [Persian]
[10]. Valiallahi J. Evaluating groundwater level and water-quality variation in Oshnaveh–Naqadeh Plain, Urmia Lake basin, northwestern Iran. International Journal of Energy and Water Resources. 2020; 4(1): 27-35.‏
[11]. Al Kuisi M, Al-Qinna M, Margane A, Aljazzar T. Spatial assessment of salinity and nitrate pollution in Amman Zarqa Basin: a case study. Environmental Earth Sciences. 2009; (1): 117-129.
[12]. Arslan H. Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: The case of Bafra Plain, Turkey. Agricultural water management. 2012;  57-63.
[13]. Roshangar K, Mirheidarian Sh. Use of evolutionary method of gene expression programming in estimating scour of bridge piers in non-adhesive substrates based on laboratory and field data. 8th National Congress of Civil Engineering of Babol. 2014. [Persian]
[14]. Ghorbani H, Salehi A. Using gene expression programming to study changes in groundwater quality data with water level fluctuations in Isfahan Borkhar plain. 6th Semnan National Civil Engineering Congress. 2011. [Persian]
[15].Khashei-Siuki A, Sarbazi M. Evaluation of ANFIS, ANN, and geostatistical models to spatial distribution of groundwater quality (case study: Mashhad plain in Iran). Arabian Journal of Geosciences. 2015; 8(2): 903-912.‏
 [16]. Yan X, Su X. Linear regression analysis: theory and computing. World Scientific. 2009.
[17]. Fan J, Gibels I. Local Polynomial Modelling and Its Applications, Chapman & Hall. Londan. Water Resources Bulletin. 1996; (87): 998-1004.
[18]. Abareshi F, Meftah Halghi M, Sanikhani H, Dehghani A.A. Comparison of three intelligence techniques for predicting water table depth fluctuations (Case study: Zarringol plain). Water and Soil Conservation. 2014; (1): 163-180. [Persian]
[19]. Nekooamal Kermani M, Mirabbasi R. Assessment of Interpolation Methods in Estimation of Groundwater Level (Case study: Sarkhon Plain). Hydrogeology. 2017; (2): 84-95. [Persian]
[20]. Yazdani Y, Vali A, Ghazavi R. Investigation of geostatistical methods in qualitative zoning of groundwater resources in Kashan plain. Geography and environmental planning. 2014; (3): 171-184. [Persian]
[21]. Hajihashemijazi M. R, Atashgahi M, Hamidian A. H. Spatial estimation of groundwater quality factors using geostatistical methods (case study: Golpayegan plain). Journal of Natural Environment. 2011; 63(4): 347-357.‏