بررسی هیدروژئوشیمی منابع آب ‏زیرزمینی دشت بستان‏ آباد با استفاده از روش‏ های آماری چندمتغیره

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری هیدروژئولوژی، دانشکدۀ علوم طبیعی، دانشگاه تبریز، تبریز

2 استاد گروه علوم زمین، دانشکدۀ علوم طبیعی، دانشگاه تبریز، تبریز

چکیده

کاهش منابع آب سطحی در دشت بستان‏ آباد و بهره‏ برداری بیش از حد از منابع آب‏ زیرزمینی، باعث افت شدید سطح آب‏ زیرزمینی و درنتیجه، کاهش کیفیت آن شده است. هدف این تحقیق، بررسی غلظت عناصر اصلی، فرعی و عناصر کمیاب در منابع آب ‏زیرزمینی دشت بستان ‏آباد با روش ‏های آماری است. بنابراین، برای انجام این بررسی، 33 نمونه برای آنالیز شیمیایی یون‏ های اصلی و فرعی و شبه‌فلز و فلزات سنگین از چشمه و چاه ‏های منطقه جمع‏ آوری شد. پارامترهای فیزیکوشیمیایی نمونه ‏ها با استفاده از روش‏ های آماری چندمتغیره مانند تجزیه‌و‌تحلیل خوشه ‏ای، تجزیه‌و‌تحلیل تشخیصی و همچنین، ضریب همبستگی پیرسون بررسی شد. با استفاده از تجزیه‌و‌تحلیل خوشه ‏ای مشخص شد که نمونه ‏ها در دو خوشه واقع شده‌اند؛ خوشۀ 1 متعلق به نمونه‌های برداشتی از شرق و شمال منطقۀ مطالعه‌شده است که تحت تأثیر سازندهای تبخیری میوسن منطقه هستند، در حالی که خوشۀ 2 بیشتر متأثر از توف‏های آبرفتی کوه آتش‌فشانی سهند هستند. پارامترهای Na، Mg، NO3، PO4 و SiO2 در 5 گام به عنوان مناسب‏ترین پارامتر برای پیش ‏بینی خوشه ‏بندی تعیین شدند. افزایش شوری در افزایش تحرک و انتشار منگنز مؤثر خواهد بود. ارتباط متقابل کلسیم، آرسنیک و آهن نشان داد جذب آرسنیک به سطح هیدروکسید آهن در حضور کلسیم افزایش می‏یابد. ارتباط بین آهن و منگنز به دلیل حساسیت مشترک به تغییر در پتانسیل اکسایش-کاهش، ویژگی‏های ژئوشیمیایی مشابه و همچنین، حضور هم‌زمان هیدروکسی- اکسیدهای آهن و منگنز در لایۀ فوقانی خاک قوی خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Hydrogeochemical study of groundwater resources in Bostanabad plain using multivariate statistical methods

نویسندگان [English]

  • Shahla Soltani 1
  • Asghar Asghari Moghaddam 2
1 Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz,, Tabriz, Iran
چکیده [English]

Shortage of surface water resources and excessive exploitation of groundwater resources in Bostanabad plain has caused a sharp decline in groundwater level and thus reduced its quality. The purpose of this study is to investigate the concentrations of major, minor and trace elements in groundwater resources with statistical methods. Therefore, 33 samples were collected for chemical analysis of major and minor ions and metalloid and heavy metals from spring and wells in the region. Physicochemical parameters of the samples were investigated using cluster and discriminant analysis and Pearson correlation coefficient. Using cluster analysis it was found that the samples are located in two clusters; cluster 1 belongs to the samples collected from East and Northeast of the area and is affected by Miocene evaporitic formations of the region, while cluster 2 is mainly related to the samples which is impacted from alluvial tuffs of the Sahand volcanic Mountain. Na, Mg, NO3, PO4 and SiO2 parameters were determined in 5 steps as the most appropriate parameter to predict clustering. Increasing salinity will be effective in increasing the mobility and release of manganese. The correlation between calcium, arsenic and iron showed that the sorption of arsenic to the surface of iron hydroxide increases in the presence of calcium. The relation between iron and manganese will be strong due to the common sensitivity to changes in oxidation-reduction potential, similar geochemical properties as well as the simultaneous presence of iron and manganese (hydro) oxides in the upper layer of soil.

کلیدواژه‌ها [English]

  • Bostanabad
  • Hydrogeochemistry
  • Cluster Analysis
  • Discriminant Analysis
  • Pearson correlation coefficient
[1]. Ahmed N, Bodrud-Doza M, Islam SDU, Choudhry MA, Muhib MI, Zahid A, et al. Hydrogeochemical evaluation and statistical analysis of groundwater of Sylhet, north-eastern Bangladesh. Acta Geochimica. 2019; 38(3), 440-455.
[2]. Ajorlo M, Abdullah RB, Yusoff MK, Halim RA, Hanif AHM, Willms WD, et al. Multivariate statistical techniques for the assessment of seasonal variations in surface water quality of pasture ecosystems. Environmental monitoring and assessment. 2013; 185(10), 8649-8658.‏
[3]. Asgharai Moghaddam A, Nadiri A, Sadeghi Aghdam F. Investigation of hydrogeochemical characteristics of groundwater of Naqadeh plain aquifer and heavy metal pollution index (HPI). Journal of Geoscience. 2020; 29(115): 97-110. [In Persian]
[4]. Banoeng-Yakubo B, Yidana SM, Nti E. Hydrochemical analysis of groundwater using multivariate statistical methods—the Volta region, Ghana. KSCE Journal of Civil Engineering. 2009; 13(1), 55-63.
[5]. Barzegar R, Asgharai Moghaddam A, Soltani S, Baomid N, Tziritis E, Adamowski J, et al. Natural and anthropogenic origins of selected trace elements in the surface waters of Tabriz area, Iran. Environmental Earth Sciences. 2019; 78(8), 1-12.‏
[6]. Barzegar R, Asgharai Moghaddam A, Soltani S, Fijani E, Tziritis E, Kazemian N. Heavy metal (loid) s in the groundwater of Shabestar area (NW Iran): source identification and health risk assessment. Exposure and Health. 2019; 11(4), 251-265.
[7]. Barzegar R, Asgharai Moghaddam A, Tziritis E, Fakhri MS, Soltani S. Identification of hydrogeochemical processes and pollution sources of groundwater resources in the Marand plain, northwest of Iran. Environmental Earth Sciences. 2017; 76(7), 1-16.
[8]. Bodrud-Doza MD, Islam AT, Ahmed F, Das S, Saha N, Rahman MS. Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh. Water Science. 2016; 30(1), 19-40.‏
[9]. Chen T, Zhang H, Sun C, Li H, Gao Y. Multivariate statistical approaches to identify the major factors governing groundwater quality. Applied Water Science. 2018; 8(7), 1-6.‏
[10]. Drever JI. The geochemistry of natural waters: surface and groundwater environments. USA: Prentice-Hall. 1997.
[11]. Eftekhar nezhad I. Brief history and structural development of Azerbaijan, Geology Survey, Hran. 1975; Vol 8.
[12]. Elumalai V, Nethononda VG, Manivannan V, Rajmohan N, Li P, Elango, L. Groundwater quality assessment and application of multivariate statistical analysis in Luvuvhu catchment, Limpopo, South Africa. Journal of African Earth Sciences. 2020; 171, 103967.
[13]. Gaciri SJ, Davies TC. The occurrence and geochemistry of fluoride in some natural waters of Kenya. Journal of Hydrology. 1993; 143(3-4), 395-412.‏
[14]. Hajigholizadeh M, Melesse AM. Assortment and spatiotemporal analysis of surface water quality using cluster and discriminant analyses. Catena. 2017; 151, 247-258.‏
[15]. Humphreys WF. Hydrogeology and groundwater ecology: Does each inform the other?. Hydrogeology Journal. 2009; 17(1), 5-21.
[16]. Ismail A, Toriman ME, Juahir H, Zain SM, Habir N.LA, Retnam A, et al. Spatial assessment and source identification of heavy metals pollution in surface water using several chemometric techniques. Marine pollution bulletin. 2016; 106(1-2), 292-300.‏
[17]. Liu H, Yang J, Ye M, James SC, Tang Z, Dong J, et al. Using t-distributed Stochastic Neighbor Embedding (t-SNE) for cluster analysis and spatial zone delineation of groundwater geochemistry data. Journal of Hydrology. 2021; 597, 126146.‏
[18]. Lokhande PB, Patil VV, Mujawar HA. Multivariate statistical analysis of ground water in the vicinity of Mahad industrial area of Konkan Region, India. International Journal of Applied Environmental Sciences. 2008; 3(2), 149-164.‏
[19]. Machiwal D, Jha MK. Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate statistical analyses and GIS-based geostatistical modeling techniques. Journal of Hydrology: Regional Studies. 2015; 4, 80-110.‏
[20]. Mahlknecht J. Estimation of recharge in the Independence aquifer, central Mexico, by combining geo-chemical and groundwater flow models. PhD Thesis, Institute of Applied Geology, University of Agricultural and Life Sciences (BOKU) Vienna, Austria. 2003; 296 p.
[21]. Mazor E. Chemical and isotopic groundwater hydrology. CRC press.‏ 2003; Vol. 98.
[22]. McKenna Jr JE. An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis. Environmental Modelling & Software. 2003; 18(3), 205-220.‏
[23]. Mirzaee, S, Chitsazan M, Chaghazardi Z. Determination of the hydraulic Connection between the Ķīno anticline springs (Khuzestan province) using hydrochemical data, principal component analysis (PCA) and hierarchical cluster (HCA). Advanced Applied Geology. 2019; 9(2): 133-141. [In Persian]
[24]. Oinam JD, Ramanathan AL, Singh G. Geochemical and statistical evaluation of groundwater in Imphal and Thoubal district of Manipur, India. Journal of Asian Earth Sciences. 2012; 48, 136-149.‏
[25]. Paknia V. Evaluation of hydrogeochemistry of Bostan Abad plain aquifer groundwater resources. Master Thesis, Faculty of Natural Sciences, University of Tabriz. 2015. [In Persian]
[26]. Panagopoulos GP, Angelopoulou D, Tzirtzilakis EE, Giannoulopoulos P. The contribution of cluster and discriminant analysis to the classification of complex aquifer systems. Environmental monitoring and assessment. 2016; 188(10), 1-13.‏
[27]. Piper AM. A graphic procedure in the geochemical interpretation of water‐analyses. Eos, Transactions American Geophysical Union. 1944; 25(6), 914-928
[28]. Siepak M, Sojka M. Application of multivariate statistical approach to identify trace elements sources in surface waters: a case study of Kowalskie and Stare Miasto reservoirs, Poland. Environmental monitoring and assessment. 2017; 189(8), 1-15.‏
[29]. Smith SD, Edwards M. The influence of silica and calcium on arsenate sorption to oxide surfaces. Journal of Water Supply: Research and Technology—AQUA. 2005; 54(4), 201-211.‏
[30]. Soltani S, Asgharai Moghaddam A, Barzegar R, Kazemian N, Tziritis E. Hydrogeochemistry and water quality of the Kordkandi-Duzduzan plain, NW Iran: application of multivariate statistical analysis and PoS index. Environmental monitoring and assessment. 2017; 189(9), 1-20.‏
[31]. Steube C, Richter S, Griebler C. First attempts towards an integrative concept for the ecological assessment of groundwater ecosystems. Hydrogeology Journal. 2009; 17(1), 23-35.
[32]. Thilagavathi R, Chidambaram S, Prasanna MV, Thivya C, Singaraja CA study on groundwater geochemistry and water quality in layered aquifers system of Pondicherry region, southeast India. Applied water science. 2012; 2(4), 253-269.
[33]. World Health Organization (WHO). Guidelines for Drinking-water Quality. Third Edition Incorporating The First And Second Addenda, Vol. 1, Recommendations World Health Organization, WHO Press, World Health Organization, Geneva, Switzerland. 2008; p. 306.
[34]. Yang J, Ye M, Tang Z, Jiao T, Song X, Pei Y, et al. Using cluster analysis for understanding spatial and temporal patterns and controlling factors of groundwater geochemistry in a regional aquifer. Journal of Hydrology. 2020; 583, 124594.‏
[35]. Yang Q, Zhang J, Wang Y, Fang Y, Martín JD. Multivariate Statistical Analysis of Hydrochemical Data for Shallow Ground Water Quality Factor Identification in a Coastal Aquifer. Polish Journal of Environmental Studies. 2015; 24(2)
[36]. Zhang Q, Xu P, Qian H, Yang F. Hydrogeochemistry and fluoride contamination in Jiaokou Irrigation District, Central China: Assessment based on multivariate statistical approach and human health risk. Science of The Total Environment. 2020; 741, 140460.‏
[37]. Zhao S, Feng C, Wang D, Liu Y, Shen Z. Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: relative role of sediments’ properties and metal speciation. Chemosphere. 2013; 91(7), 977-984.‏