تأثیر اقلیم بر میزان کاهش انتشار گازهای گلخانه‏ ای و مصرف انرژی در بخش گرمایش ساختمان‏های آموزشی دانشگاه‏ها در صورت برنامه ‏ریزی آموزشی بهینه

نوع مقاله : پژوهشی

نویسندگان

1 استادیار، دانشکدۀ مهندسی مکانیک، دانشگاه شیراز، شیراز

2 دانشیار، دانشکدۀ علوم و فنون نوین، دانشگاه تهران، تهران

3 دانش‏آموختۀ مقطع کارشناسی ‏ارشد، دانشکدۀ مهندسی انرژی، دانشگاه صنعتی شریف، تهران

4 دانش‏ آموختۀ مقطع کارشناسی‏ ارشد مهندسی نفت اکتشاف، دانشکدۀ مهندسی معدن، دانشگاه صنعتی اصفهان، اصفهان

5 دانشجوی مقطع دکتری، دانشکدۀ علوم و فنون نوین، دانشگاه تهران، تهران

6 دانشجوی مقطع کارشناسی، دانشکدۀ برق و کامپیوتر، دانشگاه تهران، تهران

چکیده

این مقاله به تأثیر برنامه‏ریزی بهینۀ درسی دانشگاهی بر میزان کاهش مصرف انرژی در بخش گرمایش در اقلیم‏های مختلف می‏پردازد. با اصلاح زمان برگزاری هر درس طی هفته مقید به تمام قیود آموزشی، امکان حضور اساتید، تعداد کلاس‏ها و قوانین اختصاصی هر دانشگاه می‏توان تا حدی کاهش مصرف انرژی در ساختمان‏های کلاسی را تجربه کرد. از آنجا که عموماً دانشگاه‏ها در شهرها قرار گرفته‏اند، همچنین درصد قابل توجهی از ساختمان‏های کشور ایران به‌خصوص ساختمان‏های آموزشی دانشگاه‏ها با استفاده از گاز طبیعی گرم می‏شوند. از این‌رو، این کاهش مصرف انرژی، همراه با کاهش انتشار گازهای گلخانه‏ای در سطح شهرها است. برنامه‏ریزی بهینۀ آموزشی می‏تواند کاهش تقاضا را به ارمغان آورد. راهکار مرسوم اصلاح برنامه‏ریزی آموزشی برای کاهش مصرف انرژی، تغییر زمان شروع و پایان هر ترم با حفظ زمان ارائۀ دروس در ساعت‌های مشخص پیشین یا تغییر دمای اتاق است. در این مقاله با استفاده از یک مدل جامع برنامه‏ریزی آموزشی، تأثیر برنامه‏ریزی آموزشی بهینه در کاهش مصرف انرژی در بخش گرمایش برای 2700 نقطه از کشور ایران صورت پذیرفته است تا تأثیر برنامه‏ریزی آموزشی در اقلیم‏های مختلف کمی‏سازی شود. نتایج ارزیابی نشان می‏دهد برنامه‏ریزی آموزشی بهینه امکان کاهش شدت مصرف انرژی در بخش گرمایش در بازۀ 1 تا 25 درصد (با مقدار متوسط در همسایگی 4 درصد) فراهم می‏آورد و درصد کاهش مصرف انرژی برای اقلیم‏های بیابانی بیشتر است.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Different Climates on Greenhouse Gas Emissions and Heating Energy Consumption for Academic Buildings Using Optimal Scheduling

نویسندگان [English]

  • ََAmirhossein Fathi 1
  • Hossein Yousefi 2
  • Mohammad Salehi 3
  • laleh Ghahremani 4
  • kianoosh choubineh 5
  • Kiavash Zareei 6
1 School of mechanical engineering, Shiraz university, Shiraz, Iran
3 Department of Energy Engineering, Sharif University of Technology, Tehran, Iran
4 Department of Mining Engineering, Isfahan University of Technology. Isfahan.Iran
5 Department of Renewable Energies and Environment, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
6 School of electrical and computer engineering, University of Tehran, Tehran, Iran.
چکیده [English]

This paper is to quantify the effects of optimal university curricula on reducing heating energy consumption in various climates. Changing the courses’ time slots could decrease energy use. All educational limitations, availability of professors, number of classes, and each departments’ rules are considered. Universities are often located in the cities, and most Iranian city buildings consume natural gas for heating. Therefore, natural gas reduction means a decrease in greenhouse gas emissions in urban space. The optimal curricula could lower the thermal demand. The common method to adjust the curricula is to start a semester earlier or changed the setpoint temperature. The model optimized the planning for 2700 locations in Iran with different climates. The results showed that the optimal scheduling led to one percent to 25 percent heating energy reduction. The average saving among the studied points is nearly four percent. Among them, the amount of reduction is bigger for desert climates.

کلیدواژه‌ها [English]

  • University Curricula
  • Educational Limitation
  • University Course
  • Greenhouse Gas Reduction
  • Energy Consumption Reduction
  • Matter UAP. Origin, Chemistry, Fate and Health Impacts. by F Zereini, CLS Wiseman (Heidelberg, Springer, Berlin, 2011). 2010.
  • Cui S, Wang Y-W, Xiao J-W. Peer-to-peer energy sharing among smart energy buildings by distributed transaction. IEEE Transactions on Smart Grid. 2019;10(6):6491-501.
  • Mariano-Hernández D, Hernández-Callejo L, Zorita-Lamadrid A, Duque-Pérez O, García FS. A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis. Journal of Building Engineering. 2021;33:101692.
  • Kahn ME, Li P. Air pollution lowers high skill public sector worker productivity in China. Environmental Research Letters. 2020;15(8):084003.
  • Glencross DA, Ho T-R, Camina N, Hawrylowicz CM, Pfeffer PE. Air pollution and its effects on the immune system. Free Radical Biology and Medicine. 2020;151:56-68.
  • Rider CF, Carlsten C. Air pollution and DNA methylation: effects of exposure in humans. Clinical epigenetics. 2019;11(1):1-15.
  • Wang N, Zhang J, Xia X. Energy consumption of air conditioners at different temperature set points. Energy and Buildings. 2013;65:412-8.
  • Hassouneh K, Alshboul A, Al-Salaymeh A. Influence of infiltration on the energy losses in residential buildings in Amman. Sustainable Cities and Society. 2012;5:2-7.
  • Xia T, Xi L, Du S, Xiao L, Pan E. Energy-oriented maintenance decision-making for sustainable manufacturing based on energy saving window. Journal of Manufacturing Science and Engineering. 2018;140 (5).
  • Chen Y, Tong Z, Samuelson H, Wu W, Malkawi A. Realizing natural ventilation potential through window control: The impact of occupant behavior. Energy Procedia. 2019;158:3215-21.
  • Simona PL, Spiru P, Ion IV. Increasing the energy efficiency of buildings by thermal insulation. Energy Procedia. 2017;128:393-9.
  • Lee K, Choo S. A hierarchy of architectural design elements for energy saving of tower buildings in Korea using green BIM simulation. Advances in Civil Engineering. 2018; 2018.
  • Mardiana-Idayu A, Riffat S. Review on heat recovery technologies for building applications. Renewable and Sustainable Energy Reviews. 2012;16(2):1241-55.
  • Song K, Kim S, Park M, Lee H-S. Energy efficiency-based course timetabling for university buildings. Energy. 2017;139:394-405.
  • Jafarinejad T, Erfani A, Fathi A, Shafii MB. Bi-level energy-efficient occupancy profile optimization integrated with demand-driven control strategy: University building energy saving. Sustainable Cities and Society. 2019;48:101539.
  • Sun Y, Luo X, Liu X. Optimization of a university timetable considering building energy efficiency: An approach based on the building controls virtual test bed platform using a genetic algorithm. Journal of Building Engineering. 2021;35:102095.
  • Feizi-Derakhshi M-R, Babaei H, Heidarzadeh J, editors. A survey of approaches for university course timetabling problem. Proceedings of 8th international symposium on intelligent and manufacturing systems, Sakarya University Department of Industrial Engineering, Adrasan, Antalya, Turkey; 2012.
  • Phillips AE, Walker CG, Ehrgott M, Ryan DM. Integer programming for minimal perturbation problems in university course timetabling. Annals of Operations Research. 2017;252(2):283-304.
  • Lindahl M, Sørensen M, Stidsen TR. A fix-and-optimize matheuristic for university timetabling. Journal of Heuristics. 2018;24(4):645-65.

 

  • Thepphakorn T, Pongcharoen P. Performance improvement strategies on Cuckoo Search algorithms for solving the university course timetabling problem. Expert Systems with Applications. 2020;161:113732.
  • Fathi A, Salehi M, Mohammadi M, Rahimof Y, Hajialigol P. Cooling/heating load management in educational buildings through course scheduling. Journal of Building Engineering. 2021;41:102405.
  • Krarti M. Energy audit of building systems: an engineering approach: CRC press; 2016.
  • Mokhtari M, Vaziri Sarashk M, Asadpour M, Saeidi N, Boyer O. Developing a Model for the University Course Timetabling Problem: A Case Study. Complexity. 2021;2021.
  • Algethami H, Laesanklang W. A mathematical model for course timetabling problem with faculty-course assignment constraints. IEEE Access. 2021;9:111666-82.
  • Chen MC, Goh SL, Sabar NR, Kendall G. A survey of university course timetabling problem: perspectives, trends and opportunities. IEEE Access. 2021;9:106515-29.