[1]. WHO (World Health Organization). Floods. 2017. Available online: https://www.who.int/health-topics/floods (accessed on 13 January 2022).
[2]. UNISDR (United Nations Office for Disaster Risk Reduction). Economic 1998-2017 Losses, Poverty & DISASTERS. 2017; 1-30. Available online: www.unisdr.org (accessed on 21 January 2022).
[3]. Ghazanfarpor H, Sedaghat- Kish M, Soleimani Damaneh M, Sabahi-Goraghani Y. On the Evaluation of the Reaction of Urban Managers Facing Flood as an Environmental Hazard with Emphasis on Resiliency (Case Study: Jiroft City). Geography and Sustainability of Environment. 2019; 30: 107-127. [Persian].
[4]. Loan TKH, Umitsu M. Micro-landform classification and flood hazard assessment of the Thu Bon alluvial plain, central Vietnam via an integrated method utilizing remotely sensed data.
Applied Geography. 2011; 31: 1082–1093.
[7]. Shahiriparsa A, Heydare M, Sadeghian M.S, Moharrampour M. Flood zoning simulation by HEC-RAS Model (Case Study: Johor River-Kota Tinggi Region).
Journal of river engineering. 2013; x1 (1): 33–38.
[8]. Marchesini I, Rossi M, Salvati P, Donnini M, Sterlacchini D, Guzzetti F. Delineating flood prone areas using a statistical approach, PeerJ Preprints. 2016; 4: e1937v2.
[9]. Tehrany M.S, Pradhan B, Jebur M.N. Spatial prediction of flood susceptible areas using rule based, decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology. 2013; 504: 69–70.
[10]. Generino PS, Sony E.V, Proceso L.F. Analytic hierarchy process (AHP) in spatial modeling for floodplain risk assessment. International Journal of Machine Learning Computer. 2014; 4 (5): 450–457.
https://doi.org/10.7763/IJMLC.2014.V4.453.
[11]. Tang Zh, Zhang H, Yi Sh, Xiao Y. Assessment of flood susceptible areas using spatially explicit, probabilistic multi-criteria decision analysis. Journal of Hydrology. 2018; 558: 144-158.
[12]. Gigovi´c L, Pamuˇcar D, Baji´c Z, Drobnjak S. Application of GIS-Interval Rough AHP Methodology for Flood Hazard Mapping in Urban Areas. Water. 2017; 9 (6): pp. 1-26.
https://doi.org/10.3390/w9060360.
[13]. Singha C,
Swain K.C, Meliho M, Abdo H.G, Almohamad H, Al-Mutiry M.Spatial Analysis of Flood Hazard Zoning Map Using Novel Hybrid Machine Learning Technique in Assam, India. Remote Sensing. 2022; 14 (24): 6229.
https://doi.org/10.3390/rs14246229.
[14]. Jalaliyan S.I. Evaluating and zoning flooding on a temporal and spatial scale (Study Area: Gorgan River Watershed in Golestan Province). Geographical Planning of Space Quarterly Journal. 2022; 11 (42): 143-162. [Persian].
[15]. Soleimani K. Final report of flood risk zoning project of Mazandaran province (case study: Vazroud basin). Sari Agricultural Sciences and Natural Resources University. 2019; 242. [Persian].
[16]. Alipour A, Mahdavi M. Analyzing the role of local society's environmental understanding played in natural resources operation in the watersheds of the North of Iran. (case study: Vazrood watershed– Noor). Quarterly Geographical Journal of Territory. 2008; 5 (17): 13-26. [Persian].
[17]. Pack R.T. Tarboton D.G, Goodwin C.N. Terrain stability mapping with SINMAP, technical description and users guide for version 1.00, 4114–0, Terratech Consulting Ltd, Salmon Arm. British Columbia.
[18]. Hammond C, Hall D, Miller S, Swetik, P. Level I stability analysis (LISA) documentation for version 2.0. General technical report INT- 285. 1992; p. 36.
[19]. Ghorbanzadeh O, Feizizadeh B, Blaschke T. Multi-criteria risk evaluation by integrating an analytical network process approach into GIS-based sensitivity and uncertainty analyses. Geomatics Natural Hazards Risk. 2018b; 9 (1): 127–151.
[20]. Mitroulis D, Kitsios F. MCDA for assessing the impact of digital transformation on hotel performance in Thessaloniki. Proceedings of the 8th International Symposium & 30th National Conference on Operational Research; Patras, Greece. 2019; 53–57.
[21]. Yariyan P, Karami M.R., Abbaspour R.A. Exploitation of MCDA to Learn the Radial Base Neural Network (RBFNN) aim physical and social vulnerability analysis versus the earthquake (case study: Sanandaj City, Iran). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Volume XLII-4/W18 1071–1078. GeoSpatial Conference – Joint Conferences of SMPR and GI Research 12–14 October, Karaj, Iran. 2019; 8 pp.
[22]. Alilou H, Rahmati O, Singh VP, Choubin B, Pradhan B, Keesstra S. Evaluation of watershed health using Fuzzy-ANP approach considering geo-environmental and topo-hydrological criteria. Journal of Environment Management. 2019; 232: 22–36.
[23]. Peng K.H, Tzeng G.H. Exploring heritage tourism performance improvement for making sustainable development strategies using the hybrid-modified MADM model. Current Issues in Tourism. 2019; 22 (8): 921–947.
[25]. Alizadeh M, Ngah I, Hashim M, Pradhan B, Pour A.B. A hybrid analytic network process and artificial neural network (ANP-ANN) model for urban earthquake vulnerability assessment. Remote Sensing. 2018; 10 (6): 1-34. doi:10.3390/rs10060975.
[26]. Khayrizadeh M, Maleki J, Amunia H. Potential flood hazard zoning in Mardeghai catchment using model ANP. Quantitative Geomorphology Research. 2018; 1 (3): 39-56. [Persian].
[27]. Pradhan B. Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. Journal of Spatial Hydrology. 2010; 9 (2): 9–18.
[28]. Zhan X, Huang M. L. Arc CN-Runoff: an ArcGIS Tool for Generating Curve Number and Runoff Maps. Environmental Modelling & Software. 2004; 19 (10): 875–879.
[29]. Ouma Y.O, Tateishi R. Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: methodological overview and case study assessment. Water. 2014; 6: 1515–1545.
[30]. Daneshparvar B, Rasi Nezami S, Feizi A, Aghlmand R. Comparison of results of flood hazard zoning using AHP and ANP methods in GIS environment: A case study in Ardabil province, Iran. Journal of Applied Research in Water and Wastewater. 2021; 9 (1): 1-7.
[31]. Khalil R. Flood Risk Code Mapping Using Multi Criteria Assessment. Journal of Geographic Information. 2018; 10: 686-698. doi:
10.4236/jgis.2018.106035.
[32]. Zoratipour A , Cheraghi M. Combined Application of Multi-Criteria Decision Making Methods and Remote Sensing Systems for Flood Cellular Zoning of Abolabbas River Basin in Khuzestan Province. Irrigation Sciences and Engineering (JISE). 2022; 44 (4): 109-122. [Persian].
[34]. Khosravi K, Shahabi H, Pham BT, Adamowski J, Shirzadi A, Pradhan B, Dou J, Ly H-B, Gr_of G, Ho HL, et al. A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. Journal of Hydrology. 2019; 573: 311–323.