[1]. Eftekhari SH, Monem MJ. Determination Irrigation Canal Capacity and Achievable Flexibility for Arranged Delivery. Water and Irrigation Management. 2023 Sep 23;13(3):801ـ 16. [Persian]
[2]. Orojloo M, Shahdany SM, Roozbahani A. Developing an integrated risk management framework for agricultural water conveyance and distribution systems within fuzzy decision making approaches. Science of the Total Environment. 2018 Jun 15;627:1363ـ 76.
[3]. Bozorgi A, Roozbahani A, Hashemy Shahdany SM, Abbassi R. Development of multiـ hazard risk assessment model for agricultural water supply and distribution systems using bayesian network. Water Resources Management. 2021 Aug;35(10):3139ـ 59.
[4]. Ministry of Energy, Iran Water Resources Management CO. Deputy of Research, Office of Standard and Technical Criteria. General Design Criteria of Irrigation and Drainage System (Bulletin 281). Iranian Management and Planning Organization, 1994. Publication No.107, Tehran, Iran
[5]. Ostovari S, Monem MJ. Management and performance improvement of irrigation canals in water‐scarce conditions considering hydraulic drawbacks: A case study for the Eastern Aghili secondary canal, Iran. Irrigation and Drainage. 2022 Dec;71(5):1294ـ 303.
[6]. Shahverdi K, Mollazeiynali H, Marofi M. Design of Operation Strategy for Canal Structures. Journal of Hydraulics. 2023 Dec 22;18(4).
[7]. Fipps G. Potential water savings in irrigated agriculture for the Rio grande planning region (Region M). Texas Water Resources Institute. 2005.
[8]. Akkuzu E, Ünal HB, Karataş BS. Determination of water conveyance losses in the Menemen open canal irrigation network. Turkish Journal of Agriculture and Forestry. 2014;31(1):11ـ 22.
[9]. Kedir Y. estimation of conveyance losses of Wonjiـ Shoa Sugar Cane Irrigation Scheme in Ethiopia. Journal of Environment and Earth Science. 2015;5(17):2224ـ 3216.
[10]. Jadhav PB, Thokal RT, Mane MS, Bhange HN, Kale SR. improving conveyance efficiency through canal lining in command area: A Case Study. International Journal of Engineering Innovation & Research. 2014;3(6):820ـ 826.
[11]. Karimi Avargani H, Hashemy Shahdany SM, Hashemi Garmdareh SE, Liaghat A. determination of water losses through the agricultural water conveyance, distribution, and delivery system, Case study of Roodasht Irrigation District, Isfahan. Water and Irrigation Management. 2020;10(1):143ـ 156. [Persian]
[12]. Serra P, Salvati L, Queralt E, Pin C, Gonzalez O, Pons X. estimating water consumption and irrigation requirements in a Long‐Established Mediterranean Rural Community by remote sensing and field data. Irrigation and Drainage. 2016;65(5):578ـ 88.
[13]. Shahrokhnia MA, Olyan Ghiasi A. methods of seepage estimation in canals and evaluation of seepage and distribution efficiency in Doroodzan irrigation system. Journal of Water Management in Agriculture. 2018;4(2):27ـ 36. [Persian]
[14]. Kaghazchi A, Shahdany SM, Roozbahani A. Simulation and evaluation of agricultural water distribution and delivery systems with a Hybrid Bayesian network model. Agricultural Water Management; 2021; 28(8):106578.
[15]. Ghumman AR, Ahmad S, Rahman S, Khan Z. Investigating management of irrigation water in the upstream control system of the upper swat canal. Iranian Journal of Science and Technology, Transactions of Civil Engineering; 2018; 42(1):153ـ 64.
[16]. Dejen ZA. Hydraulic and operational performance of irrigation schemes in view of water saving and sustainability: sugar estates and community managed schemes In Ethiopia. Wageningen University and Research; 2015.
[17]. Soler, J., Gamazo, P., Rodellar, J., and Gómez, M. Operation of an irrigation canal by means of the passive canal control. Irrigation science; 2018; 33(2): 95ـ 106
[18]. Shahverdi K, Maestre JM. Holistic Framework for Canal Modernization: Operation Optimization, and Economic and Environmental Analyses. Water Resources Management. 2023; 30(1):1ـ 20.
[19]. Marashi A, Kouchakzadeh S, Yonesi HA. Rotary gate discharge determination for inclusive data from free to submerged flow conditions using ENN, ENN–GA, and SVM–SA. Journal of Hydroinformatics. 2023; 25(4): 1312–1328.
[20]. Akbari, M. Soil Water Balance and Crop Yield of Winter Wheat Using AquaCrop Simulation Model. Journal of Agricultural Engineering Research. 2012; 12(4):19ـ 34.
[21]. Van Overloop PJ, Negenborn RR., De Schutter B, Van De Giesen NC. Predictive control for national water flow optimization in the Netherlands. Intelligent Infrastructures. 2010; 42(4):439ـ 461.
[22]. Schuurmans J, Schuurmans W, Berger H, Meulenberg M, Brouwer R. Control of water levels in the Meuse river. Journal of Irrigation and Drainage Engineering. 1997;123(3):180ـ 184.
[23]. Isapoor S, Montazer A, Van Overloop PJ, Van De Giesen N. Designing and evaluating control systems of the Dez main canal. Irrig. Drain. 2011;60(1):70ـ 79.
[24]. Molden DJ, Gates TK. Performance measures for evaluation of irrigationـ waterـ delivery systems. Journal of Irrigation and Drainage Engineering.1990;116(6):804ـ 823.
[25]. Daneshfaraz R, Norouzi R, Abbaszadeh H, Azamathulla HM. Theoretical and experimental analysis of applicability of sill with different widths on the gate discharge coefficients. Water Supply. 2022; 22(10):7767ـ 81.
[26]. Hassanzadeh, Yousef, and Hamidreza Abbaszadeh. Investigating Discharge Coefficient of Slide Gateـ Sill Combination Using Expert Soft Computing Models. Journal of Hydraulic Structures. 2023; 9(1): 63ـ 80.