مقایسۀ عملکرد مدل آماری و مدل دینامیکی در شبیه‌سازی بارش حدی

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری آب و هوا‌شناسی، دانشکدۀ جغرافیا دانشگاه خوارزمی

2 استاد دانشکدۀ جغرافیا، دانشگاه خوارزمی

3 دانشیار پژوهشکدۀ هواشناسی

چکیده

در سال‌های اخیر منابع آب بر اثر تغییر اقلیم دست‌خوش تنش‌های جدی شده است. هدف مطالعۀ حاضر، بررسی دو مدل ریز‌مقیاس‌ساز آماری و دینامیکی به‌منظور ریز‌مقیاس‌سازی بارش حدی حوضۀ آبریز گرگان‌رود در روز‌های 23 و 24 اردیبهشت 1371 است که به ثبت دبی حدی در منطقه منجر شد‌. در این پژوهش، از مدل آماری SDSM و مدل دینامیکی Regcm4 استفاده شد. نتایج نشان داد مدل آماری SDSM‏ قابلیت بسیار کمی (ضرایب تبیین 002/0 تا 18/0 و میانگین خطای مطلق 20 میلی‌متر) در شبیه‌سازی بارش‌های حدی دارد به‌طوری‏که ضرایب تبیین و همبستگی‌های کم قابل مشاهده بود؛ در صورتی‏ که مدل Regcm4 ضرایب تبیین بسیار زیاد تا 100 درصد و میانگین خطای مطلق تا 67 میلی‌متر را ثبت کرده است به‌دلیل اینکه این مدل با در‌نظر‌گرفتن الگوهای دینامیک کلی به شبیه‌سازی بارش حدی می‌پردازد، علاوه بر اینکه با آزمون خطای طرح‌واره‌های موجود در آن می‌تواند نتایج را تا حد زیادی به داده‌های مشاهداتی منطقه نزدیک کند. تحلیل نقشه‏های هوا نشان دادند طی این دو روز نیمۀ غربی ایران و بخش‌های جنوبی و مرکزی تحت حاکمیت الگوهای کم‌فشار بوده‌اند که جهت جریانات کم‌فشار، جنوبی و غربی بوده و از سمت دریای عدن و خلیج فارس و دریای سیاه و مدیترانه هستند. نقشه‌های الگوهای ارتفاع ژئوپتانسیل حاکمیت کم ارتفاع‌هایی در تراز 500 و 850 هکتوپاسکال را در منطقۀ مد نظر نمایش می‌دهد.
 

کلیدواژه‌ها

موضوعات


  1.  

     

    1. Qi S, Sun G, Wang Y, McNulty S.G, Moore Myers J.A. Streamflow response to climate and landuse changes in a coastal watershed in North Carolina. Trans ASABE. 2009;52:739–49.
    2. Fischer E.M, Knutti R. Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res.2014; Lett. 41. http://dx.doi.org/10.1002/2013GL058499.
    3. Paparrizos S, Maris F, Matzarakis A. Integrated analysis of present and future responses of precipitation over selected Greek areas with different climate conditions.Atmos. Res.2016; 169 (Part A): 199–208..http://dx.doi.org/10.1016/j.atmosres.2015.10.004.
    4. Ahmadvand Kahrizi M,Rouhani H. Assessing the conservation impacts of climate change based on temperature projected on 21 century (Case study: Arazkoseh and Nodeh stations)).Eco Hydrology ,2017; 3( 4) :597-609.[Persian].
    5. Chen H, Xu C.Y, Guo S.Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. Journal of Hydrology.2012; 434–435 : 36–45. http://dx.doi.org/10.1016/j.jhydrol.2012.02.040.
    6. Fowler H.J, Blenkinsop S, Tebaldi C. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol.2007; 27 (12): 1547–1578. DOI: 10.1002/joc.1556.
    7. Sunyer M.A, Madsen H, Ang P.H.A comparison of different regional climate models and statistical downscaling methods for extreme rainfall estimation under climate change. Atmospheric Research.2012; 103 : 119–128. http://dx.doi.org/10.1016/j.atmosres.2011.06.011.
    8. Willems P, Vrac M. Statistical precipitation downscaling for small-scale hydrological impact investigations of climate change. Journal of Hydrology.2011; 402:193–205. http://dx.doi.org/10.1016/j.jhydrol.2011.02.030.
    9. Lee T, Jeong C. Nonparametric statistical temporal downscaling of daily precipitation to hourly precipitation and implications for climate change scenarios. Journal of Hydrology.2014; 510 :182–196.. http://dx.doi.org/10.1016/j.jhydrol.2013.12.027.
    10. Mandal S, Srivastav R.K, Simonovic S.P. Use of beta regression for statistical downscaling of precipitation in the Campbell River basin, British Columbia, Canada. Journal of Hydrology.2016; 538:49–62.
    11. Asong Z.E, Khaliq M.N, Wheater H.S. Projected changes in precipitation and temperature over the Canadian Prairie Provinces using the Generalized Linear Model statistical downscaling approach. Journal of Hydrology.2016; 539:429–446. http://dx.doi.org/10.1016/j.jhydrol.2016.05.044.
    12. Piras M, Mascaro,G, Deidda R, Vivoni E.R. Impacts of climate change on precipitation and discharge extremes through the use of statistical downscaling approaches in a Mediterranean basin. Science of the Total Environment.2016; 543, :952–964. http://dx.doi.org/10.1016 /j.scitotenv. 2015. 06.088.
    13. Hundecha Y, Sunyer M.A, Lawrence D, Madsen H, Willems P,Bürger G, et al. Inter-comparison of statistical downscaling methods for projection of extreme flow indices across Europe. Journal of Hydrology xxx , xxx–xxx.2016.http://dx.doi.org/10.1016/j.jhydrol.2016.08.033.
    14. Bhatla R, Ghosh S, Mandal B, Mall R.K, Sharma K. Simulation of Indian summer monsoon onset with different parameterization convection schemes of RegCM-4.3. Atmospheric Research.2016; 176–177:10–18. DOI: http://dx.doi.org/10.1016/j.atmosres.2016.02.010
    15. Laflamme E.M, Linder E, PanY. Statistical downscaling of regional climate model output to achieve projections of precipitation extremes. Weather and Climate Extremes.2016; 12: 15–23. http://dx.doi.org/10.1016/j.wace.2015.12.001
    16. Onyutha O, Tabari H, Rutkowska A, Nyeko-Ogiramoi,P, Willems P. Comparison of different statistical downscaling methods for climate change rainfall projections over the Lake Victoria basin considering CMIP3 and CMIP5.Journal of Hydro-environment Research.2016; 12: 31–45. http://dx.doi.org/10.1016/j.jher.2016.03.001
    17. Mohammadi, F, Zarrin,A and Babaian,I.The performance of climate models to simulate rainfall Recm4 cold period in Fars Province: A Case Study period from 1990 to 2010. Earth and Space Physics.1394; 41( 3Fall): 511-524. [Persian]
    18. Ghahraman N, Babaian I,Azadi M. Post statistical processing output Regcm4 pattern of rainfall on the North West of Iran. the study of physical geography.1394 ; 47( 3):385-398. [Persian]
    19. Jamab,Gorgan Basin.1387. [Persian].
    20. Azari M, Moradi H, Saghafian B, Faramarzi M. Effects of climate change on watershed hydrology Gorgan.soil and water J (AGRICULTURAL SCIENCES AND TECHNOLOGY).1392; 27( 3 July – September): 547-537.[Persian].
    21. Zarghami M., Abdi, A., Babaeian, I., Hassanzadeh, Y. and Kanani, R. Impacts of climate change on runoffs in East Azerbaijan, Iran. Global and Planetary Change.2011;, 78(3–4): 137-146. http://dx.doi.org/10.1016/j.gloplacha.2011.06.003
    22. http://www.cccsn.ec.gc.ca/?page=pred-canesm2.
    23. Delghandi M , Moazenzadeh R. Investigating spatiotemporal variations of precipitation and temperature over Iran under climate change condition considering AOGCM models and emission scenarios uncertainty. Eco Hydrology,2017;  3( 3): 321-331. [Persian].
    24. Giorgi F. Two-dimensional simulations of possible mesoscale effects of nuclear war fires. J. Geophys. Res. 1989;94:1127–1144. DOI: 10.1029/JD094iD01p01145.
    25. Grell G.A. prognostic evaluation of assumptions used by cumulus parameterization. Mon. Wea. Rev1993;.121: 764-787. DOI: http://dx.doi.org/10.1175/1520-0493(1993)1212.0.CO;2.
    26. Giorgi, F., and G. T. Bates, The climatological skill of a regional model over complex terrain, Mon. Wea. Rev.1989; 117:2325–2347. DOI:http://dx.doi.org/10.1175/1520-0493(1989)1172.0.CO;2.
    27. Sundqvist H, E Berge, and J. E Kristjansson. The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model, J. Climate.1989; 11: 2698–2712. DOI: http://dx.doi.org/10.1175/1520-0442(1998)0112.0.CO;2.
    28. Kiehl J. T, J. J Hack, G. B Bonan, B. A Boville, B. P Breigleb, D Williamson, and P Rasch. Description of the ncar community climate model (ccm3). Tech. Rep. NCAR/TN-420+STR. National Center for Atmospheric Research, 1996. http://dx.doi.org/10.5065/D6FF3Q99.
    29. Grell G.A. prognostic evaluation of assumptions used by cumulus parameterization. Mon. Wea. Rev1993;.121: 764-787. DOI: http://dx.doi.org/10.1175/1520-0493(1993)1212.0.CO;2.
    30. Fritsch J.M,Chappell C.F. Numerical prediction of convectively driven mesoscale pressure systems. part 1: Convective parameterization. J. Atmos. Sci.1980;37: 1722-1733. http://dx.doi.org/10.1175/1520-0469(1980)0372.0.CO;2.
    31. Dickinson R. E, A Henderson-Sellers and P. J Kennedy. Biosphere-Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR Community climate model,NCAR technical note NCAR/TN-387+STR.1993; 72pp. doi:105065/D67W6959.
    32. Ahmadi M,Lashkari H, Keikhosrav Gh,Azadi M. Comparison of LARS_WG and RegCM4 models in simulation and post-processing of annual temperature and rain fall data in Great Khorasan,journal of Sepehr.2016;25:157-170. [Persian].
    33. Naserzadeh M,Ghasemifar E, Motamedi M, Analysis Drought for Observed and Future period using downscaling models (LARSWG and SDSM) in southern coastal of Caspian Sea, Geography and planning of urban and regional.2016;20:203-222. [Persian].
    34. Ghasemifar E. Investigation of regionalization of climate change over coast of caspian sea.MA thesis, supervisior:Bohloul Alijani,2012.Kharazmi University. [Persian].
    35. Tiwari PR,Chandrakar S,Mohanty UC,Dey S,Sinha P,Raju PVS,Shekhar MS, The role of land surface schemes in the regional climate model (RegCM) for seasonal scale simulations over Western Himalaya, Atmósfera.2016: 28(2), 129-142.
    36. Daniel A, Changes in extreme precipitation events over the central United States in AOGCM-driven regional climate model simulations, Graduate Theses and Dissertations in Agricultural Meteorology,2015.
دوره 4، شماره 2
تیر 1396
صفحه 301-313
  • تاریخ دریافت: 10 آذر 1395
  • تاریخ بازنگری: 09 اسفند 1395
  • تاریخ پذیرش: 15 اسفند 1395
  • تاریخ اولین انتشار: 01 تیر 1396
  • تاریخ انتشار: 01 تیر 1396