[1]. Liu J, Williams J R, Zehnder A J B, Yang H. GEPIC-Modeling Wheat yield and CropWater Productivity with High Resolution on a Global scale. Agricultural System. 2007;94:478-493.
[2]. Allan J A.Virtual Water-the Water, Food, and Trade Nexus: Useful Concept or Misleading Metaphor. Water international. 1997;28(1):106-113.
[3]. Turton A R. Precipitation ,People ,Pipelines and Power: Towards a Virtual Water Based Political Ecology Discourse. MEWREW Occasional Paper. Water Issues Study Group. School of Oriental and African Studies (SOAS). University of London. 2000.
[4]. Ministry of Energy, Qom Regional Water Company. Face to Face Talks. 2019. [Persian]
[5]. Ababaei B, and Ramezani Etedali H. Estimation of Water Footprint Components of Iran’s Wheat Production: Comparison of Global and National Scale Estimates. J. Environ. Process. 2014;1:193-205. [Persian]
[6]. Pahlow M, Snowball J, Fraser G. Water Footprint Assessment to Inform Water Management and Policy Making in South Africa. Water SA. 2015;41(3):301-305.
[7]. Wang Y D, Leeb J S, Agbemabiesea L, Zamea K, Kang S. Virtual Water Management and Water Energy Nexus: A Case Study of three Mid-Atlantic. Resources, Conservation and Recycling. 2015;98(3):76-84.
[8]. Schyns J F, Hamaideh A, Hoekstra A Y, Mekonnen M M, Schyns M. Mitigating the Risk of Extreme Water Scarcity and Dependency: the Case of Jordan. Water. 2015;7:5705-5730.
[9]. Zhau L, Mekonnen M M, Hoekstra A Y, Wada Y. Inter- and Intra-Annual Variation of Water Footprint of Crops and Blue Water Scarcity in the Yellow River Basin (1961-2009). Advances in water resources. 2016;87:29-41.
[10]. Dehghanpir Sh, Bazrafshan O B, Helisaz A. Estimation and Evaluation of Blue and Green Water Footprints of major Crops in Roudan in Hormozgan. Iranian Water and Wastewater Sconce and Engineering Congress. University of Tehran. 2016. [Persian]
[11]. Ramezani Etedali H, Ababaei B. Estimation of Water Footprint Components in Provincial and National Scale Barely Production. Journal of Water Research in Agricultural. 2016;30(3):431-443. [Persian]
[12]. Ramezani Etedali H, Shokoohi A, Mojtabavi S A. 2017. Utilizing the Concept of Virtual Water Footprint in the Production of Original Products to Cross the Water Crisis in Qazvin. Journal of Water and Soil. 2017;31(2):422-433. [Persian]
[13]. Babazadeh H, Sarai Tabrizi M. Evaluation of Hormozgan Agricultural Status from Virtual Water Perspective. Water Research in Agricultural. 2012;26(4).
[14]. Kirby T. Water Accounting in Australia. Chartered Accounting Journal. July 2011;38-40.
[15]. Zhang G P, Hoekstra A Y, Mathew R E. Water Footprint Assessment (WFA) for Better Water Governance and Sustainable Development. Journal of Water Resources and Industry. 2013;1-2:1-6.
[16]. Shokoohi A, Ramezani Etedali H, Mojtabavi S A, Singh V P. Using Water Footprint Accounting for Optimizing Crop Patterns in Sustainable Development Scheme, Case Study: (Qazvin plain). Journal of Iranian Water Resources Research. 2016;Vol 12. [Persian]
[17]. Mekonnen M M, Hoekstra A Y. A Global and High-Resolution Assessment of the Green, Blue and Gray Water Footprint of Wheat. Hydrology and Earth System Scinces. 2010;14:1259-1276.
[18]. Ababaei B, Ramezani Etedali H. Estimation of Water Footprint Components of Iran’s Wheat Production: Comparison of Global and National Scale Estimates. J. Environ. Process. 2014;1:193-205. [Persian]
[19]. Qom Agricultural of Jahad Organization, Face to Face Talks. 2019. [Persian]
[20]. Ehsani M, Khaledi H, Barghi Y. Introduction to Virtual Water. Iranian National Committee on Irrigation and Drainage (IRNCID). 2009;112. [Persian]
[22]. Hanaski N, Inuzuka T, Kanae S, Oki T. An
Estimation of Global Virtual Water Flow and Source of Water withdrawal for Major Crops and Livestock Products Using a Global Hydrological Model. Hydrology Journal. 2010;348:232-244.
[23]. Arabi Yazdi A, Alizadeh A, Mohammadian F. Study on Ecological Water Footprint in Agricultural Section of Iran. Journal of Water and Soil. 2009;23(4):1-15. [Persian]