تعیین مناطق آسیب‌پذیر آبخوان دشت عجب‌شیر با استفاده از بهینه‌سازی روش دراستیک با الگوریتم ژنتیک و منطق فازی

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد هیدروژئولوژی، دانشکدۀ علوم طبیعی، دانشگاه تبریز‌

2 استاد گروه علوم زمین، دانشکدۀ علوم طبیعی، دانشگاه تبریز‌

3 دانشیار گروه علوم زمین، دانشکدۀ علوم طبیعی، دانشگاه تبریز، ایران‌

4 دانشجوی دکتری هیدروژئولوژی، گروه علوم زمین، دانشکدۀ علوم طبیعی، دانشگاه تبریز‌

چکیده

‌در دهه‏های اخیر، رشد روز‌افزون جمعیت و توسعۀ تکنولوژی و به تبع آن، فعالیت‏های شدید کشاورزی و صنعتی منابع آب زیرزمینی را در معرض انواع آلاینده‏های ناشی از آنها قرار داده است. دشت عجب‏شیر واقع در جنوب غربی استان آذربایجان شرقی و جنوب شرقی دریاچۀ ارومیه، یکی از مناطقی است که با آلودگی آب زیرزمینی مواجه شده است و نیاز مبرم به بررسی‏های کیفی دارد. به همین منظور، در تحقیق حاضر، ابتدا از روش دراستیک معمولی برای بررسی پتانسیل آلودگی دشت عجب‏شیر به نیترات استفاده شد. سپس، با استفاده از روش‏های الگوریتم ژنتیک و منطق فازی (ساجنو) فرایند بهینه‏سازی صورت گرفت. مقدار شاخص در روش دراستیک معمولی از 87 تا 145، همچنین مقادیر شاخص دراستیک با در نظر گرفتن وزن‏های الگوریتم ژنتیک و بهینه‌سازی با منطق فازی به‌ترتیب 47 تا 74 و 01/0 تا 6/0به‏ دست ‏آمد که مطابق تقسیم‌بندی آلر دراستیک معمولی در محدوده‏های کم، کم تا متوسط و متوسط تا زیاد، قرار گرفته است که در آن منطقه‏ای از شمال دشت و شمال شهر عجب‏شیر دارای شاخص آسیب‏پذیری متوسط تا زیاد بودند. همچنین، دراستیک بهینه‌شده با الگوریتم ژنتیک و منطق فازی به علت کمتر بودن مقادیر شاخص از 79 در محدودۀ بدون خطر از نظر پتانسیل آلودگی قرار دارند. ضریب همبستگی دراستیک معمولی، روش الگوریتم ژنتیک و روش منطق فازی با غلظت نیترات به‌ترتیب 273/0، 57/0 و 796/0 حاصل شد. بنابراین، نتایج برتری روش منطق فازی نسبت به سایر روش‏ها را نشان می‏دهد.

کلیدواژه‌ها


[1]. Alizadeh A. Principles of Applied Hydrology. Twentieth edition. Astane-Quds Razavi Publications. 2006. [In Persian]
[2]. Babiker IS, Mohamed MA, Hiyama T, Kato KA. GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara, Heights, Gifu Prefecture, central Japan. Science of the Total Environment. 2005: 345:127–140.
[3]. Asghari Moghaddam A, Fijani A, Nadiri A. Groundwater Vulnerability Assessment of Bazargan and Poldasht Plains Using Drastic Model Based on. GIS Journal of Environmental Science. 2009; 52; 64-55. [In Persian]
[4]. Piscopo G. Groundwater vulnerability map, explanatory notes, Castlereagh Catchment, NSW, Department of Land and Water Conservation, Australia.
[5]. Vrba J, Zeporozec A. Guidebook on mapping groundwater vulnerability, International Contribution to Hydrogeology. 1994; 16; 131p.
[6]. Babiker IS, Mohamed MA, Hiyama T, Kato KA. GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara, Heights, Gifu Prefecture, central Japan. Science of the Total Environment. 2005: 345:127–140.
 
[7]. Almasri MN. Assessment of intrinsic vulnerability to contamination for Gaza costal aquifer. Journal of Environmental Management. 2008: 88(4): 577–593.
[8]. Gogu RC, Dassargues A. Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental Geology. 2000; 39:549-559.
[9]. Aller L, Bennett T, Lehr J, Petty R. DRASTIC: a standardized system for evaluating groundwater pollution using hydrogeologic settings. US EPA, Robert S. Kerr Environmental Research Laboratory. 1987: 85(2).
[10].            Asghari Moghadam A, Fijani E, Nadiri A. Optimization of Drastic Model Using Artificial Intelligence to Assess Groundwater Vulnerability in Maragheh-Bonab Plain, Quarterly Journal of Earth Sciences. 2014; 24(94); 331 - 338. [In Persian]
[11].            Rezaei F, Safavi HR, Ahmadi A. Groundwater vulnerability assessment using fuzzy logic: a case study in the Zayandehrood aquifers, Iran. Environmental Management. 2013;51(1):267-277.
[12].            Baghapour MA, Fadaei Nobandegani A, Talebbeydokhti N, Bagherzadeh S, Nadiri AA, Gharekhani M, et al. Optimization of the DRASTIC method by an artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran. Journal of Environmental Health Science and Engineering. 2016.
[13].            Nadiri AA, Gharekhani M, Khatibi R. Mapping Aquifer Vulnerability Indices using Artificial Intelligence-running Multiple Frameworks (AIMF) With Supervised and unsupervised learning. Water resource management. 2018: 3023-3040.
[14].            Sadeghfam S, Hassanzadeh Y, Nadiri A, Zarghami M. Localization of Groundwater Vulnerability Assessment Using Catastrophe Theory. Water Resour Manage. 30:4585–4601.
[15].            Panagopoulos G, Antonakos A, Lambrakis N. Optimization of the DRASTIC model for groundwater vulnerability assessment, by the use of simple statistical methods and GIS. Hydrogeology Journal. 2005: 14:894-911.
[16].            Secunda S, Collin ML, Melloul AJ. Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region. Journal of Environmental Management. 1998: 54:39-57.
[17].            McLay CDA, Dragten R, Sparling G, Selvarajah N. Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environmental Pollutants. 2001: 115:191-204.
[18].            Asghari Moghadam A, Nadiri A, Pakenia. Vulnerability assessment of Bostan Abad plain aquifer using DRASTIC and SINTACS methods. Journal of Hydrogeomorphology. Issue 8, Fall 2016. Pages 52-21. [In Persian]
[19].            Kurd M, Asghari Moghadam A. Quantitative modeling of nitrate distribution in the aquifer of Ardabil plain using fuzzy logic. 4th Iranian Water Resources Management Conference. Tehran. 2013. [In Persian]
[20].            Shwetank, Suhas, Chaudhary JK. A Comparative Study of Fuzzy Logic and WQI for Groundwater Quality Assessment Procedia Computer Science. 2020: 171: 1194-1203.
[21].            Qarakhani M, Nadiri A, Asghari Moghadam A. Investigation of aquifer vulnerability in Ardabil plain using drastic method optimized by genetic algorithm. 16th Iranian Hydraulic Conference, Ardabil Faculty of Engineering, Ardabil University. 2017.[In Persian]
[22].            Barzegar R, Asghari Moghadam A, Nadiri A, Fijani E. Using Different Fuzzy Methods to Optimize Drastic Model in Assessing Aquifer Vulnerability, Case Study: Tabriz Plain Aquifer. Journal of Geology and Environment. 2014: 94: 222-211. [In Persian]
[23].            Qasemi F, Qasemi A. Comparison of three methods of fuzzy logic, genetic algorithm, and elite ant algorithm in optimizing the operation of dam reservoirs. 7th National Congress of Civil Engineering, Shahid Nikbakht Faculty of Engineering, Zahedan, May 17th and 18th. 2013. [in Persian]
[24].            East Azerbaijan Regional Water Co. The final report of groundwater detailed studies of the plains of East Azerbaijan Province in the environment, GIS. consulting engineers of the first; 2007. [ In Persian]
[25].            Samani S. 2016. Hydrogeological study and uncertainty of the groundwater model of Ajabshir plain, East Azerbaijan. Ph.D. Thesis in Hydrogeology, Faculty of Natural Sciences, University of Tabriz. [In Persian]
[26].            Meteorological Organization of Iran, Tehran, 2020. (https://data.irimo.ir/).
[27].            Darvishzadeh A. Geology of Iran. Amir Kabir Publishing Institute: Tehran; 2001.
[28].            Panagopoulos G, Antonakos A, Lambrakis N. Optimization of the DRASTIC model for groundwater vulnerability assessment by the use of simple statistical methods and GIS, Hydrogeology Journal. 2006: 12: 432-458.
[29].            Rahman A. A GIS-based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Applied Geography. 2008: 28: 32-53.
[30].            Goldberg DE. Genetic algorithms in search, optimization and machine learning, 1st Ed., Addison-Wesley Publishing Company, New York. 1989.
[31].            Mitchell M. An Introduction to Genetic Algorithms, Massachusetts Institute of Technology. 1996.
[32].            Holland JH. Adaptation in Natural and
Artificial Systems. University of Michigan Press; 1975.
[33].            Zadeh LA. Fuzzy sets. Information and Control. 1965: 8: 338-353.
[34].            Rajasekaran S, G V Pai. Neural Networks, Fuzzy Logic and Genetic Algorithms, Synthesis and, Applications; Prentice Hall of India Pvt. New Delhi. 2005: 226.
[35].            Sugeno M. Industrial applications of fuzzy control, Elsevier Science Inc; 1985.
[36].            Calvo P.I, Estrada G.J.C. Improved irrigation water demand forecasting using a soft-computing hybrid model. Biosystems Engineering. 2009: 102(2): 202-218.
[37].            Tayfur G, Nadiri A.A, Asghari Moghadam A. Supervised Intelligent Committee Mechin Method for Hydraulic C onductivity Estimation. Water Resources Management. 2014: 28: 1173-1184.
دوره 8، شماره 2
تیر 1400
صفحه 381-395
  • تاریخ دریافت: 03 آذر 1399
  • تاریخ بازنگری: 22 اردیبهشت 1400
  • تاریخ پذیرش: 22 اردیبهشت 1400
  • تاریخ اولین انتشار: 26 خرداد 1400
  • تاریخ انتشار: 01 تیر 1400